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Abstract 

Outlier detection in multivariate dataset is not quite trivial when compared to univariate. The tediousness in multivariate 

outlier is due to presence of swamping and masking effect which portrays an ideal sample point as outlier instead of true 

one. To overcome all this problems, robust techniques can be applied instead of classical outlier detection methods because 

the latter fails to find out the correct outlier. This paper enumerates various techniques like Mahalanobis, Cook’s, Leverage 

points, DFFITS, minimum volume ellipsoid (MVE) and minimum covariance determinant (MCD) for detection of outliers or 

anomalies in multivariate space and best will be identified. Researchers can use that technique to identify outliers before 

going for analysis, as this will assist in significant results.  
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Introduction 
Sesame (Sesamum indicum L.)an erect annual herb 

known as sesamum, benniseedorsimsim, is one of 

the oldest traditional oilseed crop, valued for its 

high quality seed oil (50%). Sesame is adaptable to 

a range of soil types, although it performs well in 

well drained, fertile soils of medium texture like 

sandy loam at neutral pH. Sesame being short day 

plant grows well in long day areas. Sesame oil 

contains antioxidants like lignin and tocopherols 

which gives significant resistance against 

oxidation. In India, sesame is cultivated in an area 

of around 1666.93 million ha (28.23 million ha in 

T.N) with a production of 747.03 metric tonne 

(10.84 MT in Tamil Nadu) and productivity around 

448 and 384 Kg/ha in India and Tamil Nadu 

respectively(Source: Ministry of Agriculture and 

Farmers Welfare, Govt. of India 2016-17).Hawkins 

defined the concept of an outlier as “An outlier is 

an observation which deviates so much from the 

other observations as to arouse suspicions that it 

was generated by a different mechanism.” Outliers 

can also be called as abnormalities, discordants, 

deviants, data flyer, wild observation, maverick or 

anomalies in literatures of data mining and 

statistics. 

 

In statistics, an outlier is an observation that is 

numerically distant from the other observations. 

Outliers may be indicative of data points that 

belong to a different population than the rest of the 

population. Occurrence of outliers can be due to 

incidental systemic error in theory that generated 

an assumed family of probability distribution, or it 

can simply be the case that some observations 

happen to be long away from the centre of the data. 

Outlier point can therefore indicate faulty data, 

erroneous procedures, or areas where a certain 

theory may not be valid.  

 

The possible causes of outliers may include i) error 

in recording the measurement ii) failure of the 

measurement process/tool iii) one sample differ 

fundamentally from the other sample being 

measured iv) failure of experimental process viz., 

sample did not receive the proper treatment. Outlier 

may be univariate, bivariate or multivariate based 

on number of variables present in the dataset. It is 

quite easy to detect extreme values or outlying 

observations in univariate case as well as in 

bivariate. But it is tedious in multivariate dataset 

because the residuals will also be there in 

multivariate data. The detection of outliers in 

multivariate data is considered to be an important 

and difficult task in the physical, chemical, 

engineering and agricultural sciences.  

 

Whenever multiple measurements are obtained, 

there is always a probability of getting clusters of 

outliers due to changes happening in the 

measurement process. Most standard multivariate 

analysis techniques rely on the assumption of 

normality and require the use of estimates for both 
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the location and scale parameters of the 

distribution. The presence of outliers may distort 

arbitrarily the values of these estimators and render 

meaningless results for the application of these 

techniques. Acuna and Rodriguez (2004) gave an 

intuitive understanding of masking and swamping 

effects for datasets with multiple outliers or cluster 

of outliers. 

 

A group of outlying points will skew the mean as 

well as covariance estimates towards it, as a result 

of which the distance of such outlying points from 

the mean is small. It is said that an outlier masks a 

second one close if the latter can be considered 

outlier by it, but no when considered along with the 

first one. Suppose, when an outlier is removed the 

other values/instances will appear as a new outlier, 

so called masking effect. 

 

An outlier swamps a second observation in the 

dataset if and only if the latter is considered as 

outlier under the presence of the first one. In other 

words, the second observation becomes a non-

outlying observation after the deletion of first 

outlier. A group of outlying points will skew the 

mean as well as the covariance estimates toward it 

and away from other non-outlying points. As a 

result, the distance from those points to the mean is 

large, making them look like outliers. 

 

Materials and Methods 

For detection of multivariate outliers, a secondary 

data has been collected from an evaluation study of 

sesame genotypes conducted in Department of 

oilseeds, TNAU, Coimbatore. The dataset contains 

120 observations with 4 variables viz., oil yield of 

the crop, plant height in cm, number of capsules 

per plant, seed yield. Some basic multivariate 

outlier detection methods and robust measures have 

been applied and compared for the dataset. 

 

A classical approach for detecting outliers is 

computation of Mahalanobis distance (MDi) viz., 

the distance between two points in multivariate 

space for each observations or datapoints xi. 

Varmuza and Filzmoser, 2016, p.46 reported the 

following formula for two objectsXA,XBandsample 

covariance matrix C as: 

 
MDi measures distance relative to the centroid (a 

base or central point) which can be considered as 

overall mean for multivariate data. When the MDi 

value is larger, then the data point will be far away 

from the centroid. 

Another formula to calculate MDi(Filzmoser, 2005) 

is: 

 
 

 

Where, 

xi= an object vector 

 = arithmetic mean vector 

 

Cook’s distance (Di) is used to find out the 

influential outliers in a set of predictor variables in 

regression analysis. In other words, it’s a way to 

identify points that negatively affect your 

regression model. The distance obtained is a 

combination of each observation’s leverage and 

residual values. The Cook’s distance becomes 

higher when the leverage and residuals are higher. 

Technically, Cook’s D is calculated by removing 

the i
th

 data point from the model and recalculating 

the regression. It summarizes how much all the 

values in the regression model change when the i
th

 

observation is removed.  

 
Where  is the jth fitted response value, is the 

jth fitted response value, where the fit does not 

include the observation i,  is the mean squared 

error and p is the number of coefficients in the 

regression model. 

 

Data points can be concluded as outliers with the 

following thumb rule: Cook’s D value more than 3 

times the mean (μ), any observations over 4/n (n is 

the number of observations), a potential outlier’s 

percentile of over 50 calculated using F-

distribution (Cook, R. Dennis February 1977). 

Suppose, if we have a lot of points with large Di 

values, which indicates that there is a problem with 

the regression model in general. 

 

DFFITS is an influence diagnostics tool for 

statistical regression model which indicates 

influence points. The DFFITS statistic is a scaled 

measure of change in predicted value for the i
th

 

observation when it is deleted. 

The difference in fits for observation i, denoted 

DFFITSi is defined as: 

 
  -measures the difference in predicted 

responses obtained when the i
th

 data 

point is included and excluded from 

analysis. 

 - estimated SD of the difference in 

predicted responses. 

 

An observation is considered as influential if the 

absolute value of its DFFITS value is greater than 

2 in case of large samples and 1 

for small samples. DFFITS statistic is quite similar 

to Cook’s D. 

 



 
 Electronic Journal of Plant Breeding, 10 (2): 809-815 (Jun 2019) 

               ISSN  0975-928X 

 

811 

 

  DOI: 10.5958/0975-928X.2019.00108.X 

 

An observation with an extreme value on a 

predictor variable is a point with high leverage. 

Leverage is a measure of how far an independent 

variable deviates from its mean.  High leverage 

points can have a great amount of effect on the 

estimate of regression coefficients. (Kannan and 

Manoj, 2015) reported that the diagonals of the Hat 

matrix are measures of leverage. 

 
The i

th 
diagonal of the hatmatrixH = X(X′X)

−1
X′. 

Leverage points fall between0 and 1. 

The observations with leverage values greater than 

3p/n has to be investigated, where p is the number 

of model terms with intercept and n is the number 

of observations. 

 

Leverage points are good as well as bad. Good 

Leverage point is a point that unusually large or 

small among the X-values which improves the 

precision of the regression coefficients. Bad 

Leverage point is a point situated far from the 

regression line around which the bulk of the points 

are centered, reduces the precision of the regression 

coefficient. 

 

The MCD estimator is quite simple and easy to 

find a fraction h (good observations) lies between 

n/2 and n which are not recognized as outliers to 

compute sample mean and covariance from this 

sub-sample (Majewska, J. 2015). For all possible 

sub-samples of size h, this procedure is repeated 

and finally a sub-sample with minimum 

determinant is selected. This robust procedure 

deletes the effect of outliers as well as extreme 

observations. 

 

MCD estimators are affine equivariant and 

asymptotically normal (Butler, Davies, and Jhun, 

1993). Also, the “breakdown point” (Donohoand 

Huber, 1983), which is an indicator of the 

insensitivity tooutliers, of the MCD corresponds 

approximately to (n-h)/n.A robust approach with 

high breakdown point could not be affected by very 

large value, as they will consider this as outlier. For 

robust location estimator, median is the best 

example. Rousseeuw and Van Driessen, 1999 

proposed FAST-MCD algorithm which renders the 

computation of MCD faster. 

 

MVE estimators is introduced by Rousseeuw and 

Zomeren, it is the estimate of minimum volume 

ellipsoid that encompasses at least h of the 

observations with h taken as [n/2]+1, where n is the 

number of samples. It is the computation of 

distances based on very robust estimates of location 

and covariance. MVE estimator for mean and 

covariance are used to compute robust distance and 

they are found to be more effective in identifying 

outliers when compared to MD in multivariate 

data. It is a resampling technique which entails 

drawing m sub-samples of size p+1 from the 

original data, where m is chosen to ensure a high 

probability that at least one sub-sample will be free 

of outliers. 

 

Butler et al. [1993] and Davies, showed that MCD 

has better statistical efficiency than MVE since the 

MCD is asymptotically normal and the MVE has a 

lower convergence rate than the MCD. The MVE 

estimator is highly preferable over MCD for 

identification of outliers in multivariate space, as 

MVE is less expensive and also MCD has 

computational complexity. 

 

Results and Discussion 

In this research work, classical outlier detection 

techniques like Mahalanobis, Cook’s, leverage 

points, DFFITS and robust techniques like MCD 

and MVE were applied in sesame data set with 120 

observations and 4 variables. The efficiency of 

classical techniques in detection of multivariate 

outliers were observed (Table 1). Among the four 

classical methods, the level of outlier detection was 

high in Cook’s method, Mahalanobis and Leverage 

points were quite similar in their sensitivity to find 

outliers and very low in DFFITS. 

Table2 portrays the amount of outliers identified by 

all six methods, these results clearly reveal that 

robust methods were highly sensitive in outlier 

identification when compared to classical distance 

based methods. From that it can be concluded that 

researchers can manipulate their data with robust 

methods (MVE and MCD) prior moving on to 

analysis. 
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Table 1.Comparison of classical outlier detection methods 

 
Obs MDi Di hi DFFITS Obs MDi Di hi DFFITS 

1 2.691 0.000 0.023 0.009 31 0.919 0.000 0.008 0.012 

2 0.562 0.000 0.005 -0.014 32 1.344 0.000 0.011 -0.024 

3 0.946 0.004 0.008 0.083 33 6.929 0.000 0.058 0.060 

4 1.128 0.002 0.009 -0.068 34 0.778 0.006 0.007 -0.104 

5 0.615 0.002 0.005 -0.054 35 43.532 0.258 0.366 -3.330 

6 1.023 0.000 0.009 -0.015 36 1.134 0.002 0.010 0.057 

7 3.327 0.000 0.028 0.008 37 1.276 0.003 0.011 0.087 

8 2.469 0.004 0.021 0.121 38 1.467 0.001 0.012 0.053 

9 1.226 0.001 0.010 -0.045 39 2.111 0.002 0.018 -0.080 

10 1.329 0.001 0.011 -0.037 40 1.159 0.008 0.010 0.132 

11 2.494 0.007 0.021 0.152 41 1.455 0.001 0.012 0.040 

12 0.592 0.000 0.005 0.025 42 4.820 0.008 0.041 -0.209 

13 0.887 0.002 0.007 0.058 43 0.255 0.000 0.002 -0.008 

14 0.253 0.006 0.002 0.085 44 0.445 0.016 0.004 0.148 

15 0.889 0.002 0.007 0.067 45 0.842 0.001 0.007 -0.035 

16 1.384 0.001 0.012 -0.041 46 2.091 0.018 0.018 0.231 

17 2.802 0.001 0.024 0.054 47 0.857 0.000 0.007 0.029 

18 1.588 0.044 0.013 0.330 48 0.689 0.000 0.006 0.007 

19 1.636 0.003 0.014 0.092 49 0.297 0.002 0.003 0.044 

20 0.553 0.000 0.005 -0.012 50 0.354 0.000 0.003 0.016 

21 1.236 0.001 0.010 0.054 51 0.962 0.007 0.008 0.118 

22 0.971 0.003 0.008 -0.079 52 0.483 0.009 0.004 0.114 

23 1.038 0.005 0.009 -0.099 53 0.904 0.008 0.008 0.118 

24 0.755 0.023 0.006 -0.195 54 16.646 0.012 0.140 0.453 

25 1.516 0.007 0.013 -0.127 55 0.728 0.000 0.006 -0.007 

26 2.177 0.022 0.018 -0.257 56 0.580 0.000 0.005 0.027 

27 0.413 0.001 0.003 -0.039 57 3.413 0.011 0.029 -0.217 

28 1.393 0.018 0.012 -0.204 58 1.968 0.013 0.017 -0.195 

29 0.550 0.001 0.005 0.038 59 3.964 0.026 0.033 -0.354 

30 1.251 0.001 0.011 0.039 60 1.544 0.002 0.013 0.073 
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Table 1. Contin.. 

Obs MDi Di hi DFFITS Obs MDi Di hi DFFITS 

61 0.942 0.000 0.008 -0.011 91 2.011 0.006 0.017 -0.133 

62 0.824 0.008 0.007 0.115 92 0.750 0.000 0.006 -0.023 

63 16.563 0.061 0.139 -1.015 93 0.768 0.008 0.006 -0.120 

64 18.882 0.000 0.159 0.036 94 2.181 0.016 0.018 -0.219 

65 4.914 0.007 0.041 -0.197 95 0.580 0.007 0.005 0.101 

66 0.644 0.000 0.005 -0.016 96 0.839 0.019 0.007 -0.183 

67 0.216 0.001 0.002 0.031 97 0.682 0.001 0.006 -0.048 

68 0.442 0.002 0.004 0.051 98 2.309 0.009 0.019 -0.171 

69 21.054 0.128 0.177 1.650 99 0.567 0.003 0.005 -0.064 

70 6.881 0.060 0.058 0.676 100 1.532 0.010 0.013 -0.152 

71 2.530 0.008 0.021 -0.160 101 0.051 0.000 0.000 -0.001 

72 1.305 0.009 0.011 0.142 102 0.337 0.000 0.003 0.018 

73 2.034 0.000 0.017 0.016 103 0.515 0.002 0.004 0.049 

74 0.162 0.007 0.001 -0.090 104 1.629 0.000 0.014 -0.001 

75 0.044 0.002 0.000 0.041 105 0.242 0.015 0.002 0.133 

76 0.942 0.000 0.008 0.029 106 0.860 0.000 0.007 -0.004 

77 2.549 0.007 0.021 0.149 107 0.421 0.000 0.004 -0.004 

78 2.091 0.000 0.018 -0.023 108 0.332 0.003 0.003 -0.063 

79 1.865 0.002 0.016 0.076 109 0.605 0.002 0.005 0.062 

80 1.724 0.000 0.014 0.028 110 10.790 0.036 0.091 -0.642 

81 1.565 0.005 0.013 0.111 111 1.842 0.001 0.015 -0.056 

82 4.040 0.010 0.034 0.220 112 3.418 0.007 0.029 -0.176 

83 0.086 0.000 0.001 0.008 113 0.510 0.009 0.004 0.117 

84 0.936 0.001 0.008 -0.034 114 1.362 0.010 0.011 -0.153 

85 55.820 0.000 0.469 0.073 115 0.547 0.000 0.005 -0.011 

86 0.068 0.000 0.001 -0.009 116 0.804 0.004 0.007 -0.079 

87 0.992 0.002 0.008 -0.066 117 0.635 0.000 0.005 0.004 

88 0.952 0.003 0.008 0.073 118 1.259 0.003 0.011 -0.077 

89 1.075 0.000 0.009 0.013 119 0.292 0.001 0.002 -0.026 

90 21.479 0.056 0.181 -1.102 120 1.070 0.003 0.009 -0.078 

 

 

Table 2. Number of outliers detected 

 

 

 

 

 

 

 

 

 

 

S. No Technique  Outlier detected  

1. Mahalanobis Distance(MDi) 7 

2. Cook’s distance(Di) 15 

3. Leverage values(hi) 7 

4. DFFITS 3 

5. MCD 61 

6. MVE 58 
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Fig. 1. Scatter plot showing identified outliers using Mahalanobis, Cook’s, leverage points and DFFITS 

method. 
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