Electronic Journal of Plant Breeding

Research Article

Identification of superior drought tolerant maize hybrids based on combining ability and heterosis with Line \times Tester mating design

R. C. Aswin ${ }^{1}$, M. Sudha ${ }^{1}$, A. Senthil ${ }^{2}$, S. Sivakumar ${ }^{3}$ and N. Senthil ${ }^{4^{*}}$
${ }^{1}$ Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology,
${ }^{2}$ Department of Crop Physiology, ${ }^{3}$ Cotton Research Station, Tamil Nadu Agricultural University, Veppanthattai- 621116
${ }^{4}$ Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore-641003. Tamil Nadu, India
*E-Mail: senthil_natesan@tnau.ac.in

Abstract

Maize (Zea mays) is an important multipurpose cereal crop. Single-cross hybrids play a crucial role in maize cultivation in terms of acreage and production. The combining ability and heterosis are prime criteria for efficacious maize improvement and breeding. This study was focused to access the performances of hybrids, and to estimate heterosis and combining ability for grain yield and yield-related traits. The present study was conducted using 16 parents and 28 F_{1} cross combinations of maize hybrids during rabi 2019 to identify the best inbred lines and hybrid combinations. The overall study of gca effects suggested that the parents CBM-DL-448, CBM-DL- 435 , CBM-DL- 360 and UMI1230 were found to be good general combiners for desirable yield-related traits. Among the hybrids, CBM-DL-360 \times UMI 1200, CBM-DL-435 \times UMI 1230, and CBM-DL-448 \times UMI 1230 exhibited positive and significant sca effects and standard heterosis for single plant yield.

Keywords

Maize, Combining ability, Heterosis, Hybrids.

INTRODUCTION

Maize (Zea mays L.) is a multipurpose crop serving as food, animal feed, and is a new material for bioenergy production. According to the World Food and Agriculture (FAO, 2019), maize had an acreage of 197 million hectares with a production of 1,134 million tonnes in 2017 production season. Hybrid maize play a crucial role in increased maize production (Aslam et al., 2017 and Karim et al., 2018) and food security especially singlecross hybrids. To breed ideal hybrids with the highest grain yield, heterosis and combining ability (CA) of available germplasm have to be exploited. The higher vigour of hybrids compared to their parents was defined as "heterosis" and was first observed by Darwin, 1876. Identification of high-yielding hybrids needs development
and careful selection of parents based on their combining ability and genetic structure (Karim et al., 2018). To exploit heterosis in hybrid breeding programme, a genetic mating scheme is usually used to identify elite parental lines and hybrid performance by analyzing general combining ability (gca) and specific combining ability (sca), respectively (Sprague, 1942). Therefore, a better understanding of the genetic basis of combining ability can guide more effectively in maize improvement programs and hybrid performance prediction. Combining ability analysis is a useful genetic means to estimate gca of parents and sca of crosses to select the desired parents and crosses. Griffing, (1956) stated that gca is the average performance of a parent in a series of hybrid
combinations. The effect of combining ability, both gca and sca are important indicators of potential value for assessing inbred lines in hybrid combination to develop the hybrid varieties in maize. This information is helpful to plant breeders for formulating hybrid breeding programs. Additive genetic effects in the base population is mainly due to the variability in gca effects, while non-additive genetic effects are due to the variability in sca effects (Falconer, 1981). Combining ability analysis is useful to assess the potential inbred lines and also helps in identifying the nature of gene action involved in various quantitative characters. Sprague, 1942 emphasized that the general combining ability was relatively more importance than specific combining ability for unselected inbred lines. Line x tester mating design developed by Kempthorne (1957) provides reliable information on the general and specific combining ability effects of parents and their hybrid combinations. The present study was focused on assessing the gene action for yield and yieldrelated traits and to explore heterotic hybrids in maize.

MATERIAL AND METHODS

The five hundred germplasm obtained from Indian Agricultural Research Institute; New Delhi were screened for drought tolerance during Rabi 2018-19 season. The selected drought tolerant inbred lines viz., CBM-DL-38, CBM-DL-80, CBM-DL-111, CBM-DL-157, CBM-DL-164, CBM-DL-200, CBM-DL-238, CBM-DL-289, CBM-DL-313, CBM-DL-322, CBM-DL-333, CBM-DL-360, CBM-DL-435 and CBM-DL-448 were used as female (Lines) and the popular inbreds viz., UMI 1200 and UMI 1230 (TNAU CO 6 Maize hybrid parents) were used as male parents (Testers) .

The selected fourteen drought tolerant inbreds were crossed in a Line \times Tester mating design during Kharif, 2019 at New Area Farm of Department of millets, TNAU. Plants were raised in four-meter rows with spacing of 60 cm between rows and 25 cm between plants in two staggered sowings to achieve the synchrony in flowering.

The resulted hybrids and parents along with the check (CO6) were evaluated during rabi, 2019 at Cotton Research Station, Veppanthattai, Tamil Nadu by adopting Randomized Block Design (RBD) with two replications. Recommended agronomic and crop protection measures were carried out to raise a healthy crop.

Ten randomly selected plants of parents and hybrids in each replication were used in the study. Observations were recorded for days to tasseling, days to silking, plant height (cm), leaf length (cm), leaf breadth (cm), cob placement height (cm), tassel length (cm), cob length (cm), the number of kernels per row, the number of kernel rows, cob weight (gm), single plant yield (gm) and 100 kernel weight (gm). The mean values were subjected to line x tester analysis as suggested by Kempthorne (1957) using TNAUSTAT- Statistical package (Manivannan, 2014).

RESULTS AND DISCUSSION

The analysis of variance (ANOVA) showed significant variation among the parents and cross combinations for all the traits except cob weight and 100 kernel weight. High significance in variance of parents for all the characters indicates a significant level of average heterosis present in the hybrids. The variance due to lines, testers, and linextester interaction was significant for all the traits except 100 KW (Table 1). Non- significance for 100 KW was reported earlier by Uddin et al., 2008. This indicated that there was a good level of genetic difference present among lines and testers. The gca and sca genetic variances and their relative proportions for all the 13 yield and yield-related traits were shown in Table 1. The study of gca and sca variance reported earlier by Ambikabathy et al., 2019; Lal et al., 2011; Nandhitha et al., 2018 in Maize. The estimate of genetic variance revealed that the σ^{2} sca was higher in magnitude than the $\sigma^{2} g c a$ for all the traits viz., plant height, leaf length, leaf breadth, cob placement height, tassel length, days to tasseling, days to silking, cob length, the number of kernels per row, the

Table 1. Analysis of variance for combining ability in yield and yield related traits

Source	df	DT	DS	PH	LL	LB	CPH	TL	CL	NK/R	NKR	CW	SPY	100 KW
CROSS	27	429.59**	1091.96**	15.77**	5.47**	110.59**	31.15**	7.17**	6.06**	31.66**	5.54**	1.3446	234.11**	0.8142
LINE (c)	13	810.42**	2077.31**	12.65**	3.78**	4.28**	33.50**	8.04**	9.55**	40.34**	7.71**	1.3442	317.28**	0.7138
TESTER (c)	1	158.76**	529**	5.92*	0.24	10.05**	5.77*	0.04	4.62*	13.64**	1.38	0.224	187.62**	0.5505
LXT (c)	13	69.60**	149.92**	19.65**	149.92**	16.94**	30.74**	149.92**	2.68*	24.66**	3.68**	1.4312	154.53**	0.9349
error	27	0.0496	0.0179	18.1585	15.5975	0.1345	12.0838	4.9165	2.3772	0.754	1.5681	41.425	1.0307	12.1448
$\sigma^{2} \mathrm{gca}$		0.4305	0.4055	-1.6988	-0.7853	-0.0206	0.1178	0.0382	0.1936	0.1271	0.0701	-0.7127	1.9777	-0.0353
$\sigma^{2} \mathrm{sca}$		1.7012	1.3297	169.3722	51.185	1.0716	179.7295	14.3738	2.0038	8.9197	2.104	73.6028	79.1233	-0.3951
σ^{2} gca / $\sigma^{2} \mathrm{sca}$		0.2531	0.3050	-0.0100	-0.0153	-0.0192	0.0007	0.0027	0.0966	0.0142	0.0333	-0.0097	0.0250	0.0893

* and**Significant at 5 and 1% level

DT: Days to tasseling, DS: Days to silking, PH: Plant height (cm), LL: Leaf length (cm), LB: Leaf breadth (cm), CPH: Cob placement height (cm), TL: Tassel length, CL: Cob length (cm), NK/R: Number of kernels per row, NKR: Number of kernel rows, CW: Cob weight (gm), SPY: Single plant yield (gm), 100 KW: 100 Kernel weight (gm).
number of kernel rows per cob, cob weight, single plant yield, 100-kernel weight. Table 1 shows the ratios of sca and gca variance were high for all the characters studied
revealed the preponderance of non-additive gene action. Similar results are reported in maize by Das et al., 1994; Debnath et al., 1988; Roy et al., 1998 and Sanghi et al., 1983.

Table 2. Mean performance of thirteen yield and yield related traits in parental lines

Parents Lines	DT	DS	PH	LL	LB	CPH	TL	CL	NK/R	NKR	CW	SPY	100 SW
CBM-DL-38	54	56	103.0	55	6.3	35.5	24.2	10.4	18	8	53.84	48.92	31.78
CBM-DL-80	53	54	131.5*	66.7	6.7	41.7	30.7	11.8	22	10	68.5	58.43	27.92
CBM-DL-111	56**	57	104.2	73.7	6.5	39.2	31.2	10.3	16	10	55.4	41.71	27.61
CBM-DL-157	54	56	133.5**	84.2**	6.9	42	31.5	12.7	21	8	62.05	54.49	31.12
CBM-DL-164	54	57	111.7	78.3	7.3	46.5	34.5	14.1	26**	12	91.27	80.2**	26.91
CBM-DL-200	52	55	112.5	68.0	6.6	39.7	29.0	9.9	17	10	56.13	46.46	28.78
CBM-DL-238	56**	59**	138.2**	80.5*	5.8	44.5	35.5*	15.7**	25**	8	67.87	56.98	27.85
CBM-DL-289	52	55	114.9	72.5	7.7	37.5	23.7	12.3	20	8	65.13	54.64	33.94
CBM-DL-313	53	56	130.5*	51	5.1	36.5	28.7	11.6	16	12	71.07	63.75	31.38
CBM-DL-322	52	54	121.7	72	7.1	52.5*	29.2	13.6	27**	10	83.01	72.35**	28.48
CBM-DL-333	51	55	130.5*	81.2*	7.4	52.7*	37.7**	11.6	23	10	85.13	76.35**	35.02
CBM-DL-360	56**	58**	124.2	77.9	8.2*	51.2	35.7*	12.1	22	10	72.49	64.49*	30.39
CBM-DL-435	58**	60**	87.2	83.3**	7.8	57.2**	35.3*	11.1	23	10	68.6	62.23	34.55
CBM-DL-448	58**	61**	130.7*	75.4	8.6**	55**	37.5**	11.5	24*	12	89.83	77.58**	29.94
Testers													
UMI 1200	58.5**	61**	100.7	54.2	6.0	50.75	18.75	13	27.5**	10	80.65	72.24**	29.05
UMI 1230	56**	59**	115.5	66.3	8.4*	50.75	29.95	10.4	22.5	10	64.02	51.61	24.10
Mean	54.59	57.06	118.19	71.28	7.05	45.84	30.84	12.00	21.91	9.81	70.93	61.39	29.92

${ }^{*}$ and**significant at 5 and 1% level
Table 3. Mean performance of thirteen yield and yield related traits in Hybrids

The key condition for the selection of desirable parents was based on the performance of inbreds for their high expression of gca along with their mean. Among the lines, higher per se performance values were exhibited by CBM-DL-238 for cob length, CBM-DL-164, CBM-DL-238, CBM-DL-322, CBM-DL-448 for the number of kernels per row, CBM-DL-164, CBM-DL-322, CBM-DL333, CBM-DL-360 and CBM-DL-448 for single plant yield. Among the testers, higher per se value was recorded by UMI 1200 for the number kernels per row and single plant yield (Ambikabathy et al., 2019) and the crosses involving them are anticipated to produce hybrids with high yield potential. The cross combinations of CBM-DL-80 \times UMI 1200, CBM-DL-200 \times UMI 1230, CBM-DL-322 \times UMI 1200, CBM-DL-360 \times UMI 1200, CBM-DL-435 \times UMI 1200, CBM-DL-448 \times UMI 1200, CBM-DL-448 \times UMI 1230 were considered as outstanding ones for improving the single plant yield based on the per se performance (Table 3) (Ambikabathyet al., 2019).

From a statistical point of view, Kulembeka et al., 2012 explained that the gca is a main effect and the sca is an interaction effect. The higher gca of the parents denoted that the parents are well combiners for the characters under study (Sprague, 1942). Based on Sprague and Tatum, (1942) gca is owing to the activity of genes which are largely additive in their effects as well as additive \times additive interactions. Among the lines, the inbreds CBM-DL-360, CBM-DL-435 and CBM-DL-448 recorded positive and highly significant effect for the trait single plant yield. The inbreds CBM-DL- 360 and CBM-DL- 448 showed positive and high significant effects for the trait cob length.

The inbred CBM-DL- 435 recorded positive and significant value for the trait cob weight. Inbreds viz., CBM-DL- 157, CBM-DL-238, and CBM-DL-435 showed highly significant and positive gca for the number of kernels per row. For the number of kernel rows per cob, the inbreds CBM-DL360 and CBM-DL- 200 recorded significant and positive gca effect. Negatively significant gca effect was seen in CBM-DL- 157 and CBM-DL- 200 for days to tasseling. Overall performance of the general combining ability showed that the inbred CBM-DL- 448 recorded significant positive gca for single plant yield and cob length. The inbred CBM-DL- 435 recorded significant positive gca for single plant yield, the number of kernels per row and cob weight. CBM-DL- 360 recorded positive significant gca for single plant yield, cob length and the number of kernel rows per cob. The inbreds CBM-DL- 200, CBM-DL- 322, CBM-DL- 360 and CBM-DL- 238 had desirable gca for more than two yield and yield attributing trait. Similar kind of studies were reported by Karim et al., 2018 on gca effects of single plant yield, days to tasseling, the number of kernels per row, the number of kernel rows per cob, cob length and cob weight. The tester UMI1230 showed positive and significant gca effect for single plant yield and negative significance gca effect for days to tasseling . Ambikabathy et al., 2019 also reported similar kind of finding in UMI1230 inbred. For the trait number of kernels per row, the inbred UMI1200 recorded positive significant gca effect. Hence the lines viz., CBM-DL- 448, CBM-DL- 435and CBM-DL- 360 and the testers viz., UMI1230 (Table 4) could be effectively utilized for a single cross hybrid program to have high yield potential and earliness. High general combining ability effect for a particular trait

Table 4. The gca effects of parents for thirteen yield and yield related traits

Parent	PH	LL	LB	CPH	TL	DT	DS	CL	NK/R	NKR	CW	SPY	$\begin{aligned} & 100 \\ & \text { KW } \end{aligned}$
Lines													
CBM-DL-38	-7.13**	-3.43	0.40*	4.13*	1.85	-1.55 **	-1.77 **	0.4	-2.29**	0.23	-16.01	-13.69**	-1.46
CBM-DL-80	-9.38**	-1.38	-0.42*	-6.87**	-1.77	1.95 **	2.23 **	-3.72 **	1.21**	-1.02	5.77	1.08 *	-1
CBM-DL-111	1.37	0.15	-0.12	1.26	-1.15	3.20 **	2.73 **	-2.62 **	0.46	-2.27**	-9.64	-8.10**	0.34
CBM-DL-157	3.37	-4.13*	-0.02	-3.87*	-1.27	-1.05 **	-1.27 **	-2.80 **	2.21**	-0.77	-11.62	-7.53**	0.41
CBM-DL-164	1.54	5.62 *	-0	3.51	4.72 **	1.45 **	1.73 **	0.38	-1.79**	-1.77**	16.2	**	2.28
CBM-DL-200	0.74	-3.25	0.48*	0.38	1.48	-4.05 **	-4.27 **	-0.32	-1.04*	1.73 *	-4.01	7.32**	-0.62
CBM-DL-238	-6.63**	-2.28	-0.1	2.63	1.73	0.45 **	0.23 **	3.35 **	2.46**	-0.27	-8.97	-8.19**	-2.15
CBM-DL-289	-1.21	0.82	-0.22	-8.12**	-0.4	-3.55 **	-3.27 **	0.6	-0.04	1.23	-7.91	-3.92**	-2.59
CBM-DL-313	5.24*	-4.13*	-0.47*	-22.12**	-6.78 **	-2.30 **	-1.77 **	-1.45	1.21**	-2.27**	5.88	-0.17	1.15
CBM-DL-322	16.12**	-2.88	-0.27	7.51 **	-1.27	-3.30 **	-3.77**	1	0.21	-0.27	-0.69	1.66**	0.06
CBM-DL-333	-6.63**	5.00 *	-0.07	-12.12**	-3.78 **	-3.55 **	-2.52 **	-0.2	1.96**	-0.27	-1.97	-0.05	2.02
CBM-DL-360	3.12	7.42**	0.93**	17.26**	4.72 **	4.45 **	4.23 **	4.73 **	-8.04**	4.23**	2.08	6.00**	1.36
CBM-DL-435	9.87**	-0.33	-0.05	4.63 *	-0.67	4.95 **	4.73 **	-1.60 *	1.46**	1.23	11.41	15.90**	-0.42
CBM-DL-448	-10.38**	2.8	0.15	11.76 **	2.60 *	2.95 **	2.73 **	2.27 **	1.96**	0.23	19.47 *	16.62**	0.63
SE	2.1306	1.9747	0.1833	1.7381	1.1087	0.1114 Tester	0.0668	0.7709	0.4342	0.6261	9.2388	0.5076	1.7425
UMI 1200	-1.39	0.26	-0.16 *	-1.12	-0.06	0.38 **	0.41 **	0.44	0.43 *	-0.2	-1.17	-1.86**	0.35
UMI 1230	1.39	-0.26	0.16 *	1.12	0.06	-0.38 **	-0.41 **	-0.44	-0.43 *	0.2	1.17	1.86**	-0.35
SE	0.8053	0.7464	0.0693	0.6569	0.419	0.0421	0.0253	0.2914	0.1641	0.2367	3.492	0.1919	0.6586

* and**significant at 5 and1 \% level
Table 5 The sca effects of hybrids for thirteen yield and yield related traits

Hybrid	DT	DS	PH	LL	LB	CPH	TL	CL	NK/R	NKR	CW	SPY	$\begin{aligned} & 100 \\ & \text { KW } \end{aligned}$
CBM-DL-38 × UMI 1200	-0.87	$-0.91^{* *}$	6.39 *	3.19	0.03	1.37	2.19	0.06	1.07	-1.3	8.22	1.50 *	1.63
$\begin{aligned} & \text { CBM-DL-38 } \times \text { UMI } 1230 \\ & \text { CBM-DL-80 } \times \text { UMI } 1200 \end{aligned}$	$\underset{\substack{0.88 \\-1.38 \\ * *}}{ }$	$\begin{gathered} 0.91^{* *} \\ -0.91^{* *} \end{gathered}$	$\begin{gathered} -6.39 \\ 0.14 \end{gathered}$	$\begin{aligned} & -3.19 \\ & -6.51 \end{aligned} \text { * }$	$\begin{aligned} & -0.03 \\ & -0.74 \end{aligned}$	-7.37	$\begin{aligned} & -2.19 \\ & -1.44 \end{aligned}$	$\begin{array}{r} -0.06 \\ 0.58 \end{array}$	$\begin{aligned} & -1.07 \\ & 2.07 * * \end{aligned}$	$\begin{gathered} 1.3 \\ 0.95 \end{gathered}$	$\begin{aligned} & -8.22 \\ & 25.32 \end{aligned}$	$\begin{gathered} -1.50 \text { * } \\ 11.24 \text { ** } \end{gathered}$	$\begin{array}{r} 1.63 \\ -2.53 \end{array}$
$\begin{aligned} & \text { CBM-DL-80 × UMI } 1230 \\ & \text { CBM-DL-111 } \times \text { UMI } 1200 \end{aligned}$	$\underset{-1.13}{1.38}$	-1.91 ${ }^{\text {** }}$	$\begin{aligned} & -0.14 \\ & 6.39 \end{aligned}$	$\begin{aligned} & 6.51 \\ & -3.28 \end{aligned}$	$\begin{aligned} & 0.74^{* *} \\ & 0.56 \text { * } \end{aligned}$	$\begin{gathered} 7.63^{* *} \\ 12.49^{* *} \end{gathered}$	$\begin{array}{r} 1.44 \\ -0.81 \end{array}$	$\begin{aligned} & -0.58 \\ & -0.07 \end{aligned}$	$\begin{gathered} -2.07 \text { ** } \\ -1.18 \end{gathered}$	$\begin{aligned} & -0.95 \\ & 2.20 \text { * } \end{aligned}$	$\begin{aligned} & -25.32 \\ & -10.76 \end{aligned}$	$\begin{gathered} -11.24^{* *} \\ 1.76 \text { * } \end{gathered}$	$\begin{gathered} 2.53 \\ 2.1 \end{gathered}$
CBM-DL-111 × UMI 1230	1.13 **	1.41 **	-6.39 *	3.28	-0.56 *	-12.49	0.81	0.07	1.18	-2.20 *	10.76	-1.76 *	-2.1
$\begin{aligned} & \text { CBM-DL-157 × UMI } 1200 \\ & \text { CBM-DL-157 } \times \text { UMI } 1230 \end{aligned}$	$\underset{-0.62}{0.63}$	$\begin{gathered} 0.59^{* *} \\ -0.59 \text { ** } \end{gathered}$	$\begin{aligned} & 9.89 \text { ** } \\ & -9.89 \text { ** } \end{aligned}$	$\begin{array}{r} 4.74 \\ -4.74 \end{array}$	$\begin{array}{r} -0.04 \\ 0.04 \end{array}$	$\begin{aligned} & 17.87 \text { ** } \\ & -17.87 \end{aligned}$	$\begin{gathered} 3.31^{*} \\ -3.31^{*} \end{gathered}$	$\begin{array}{r} 0.86 \\ -0.86 \end{array}$	$\begin{array}{r} -0.93 \\ 0.93 \end{array}$	$\begin{gathered} 0.7 \\ -0.7 \end{gathered}$	$\begin{aligned} & -6.8 \\ & 6.8 \end{aligned}$	$\begin{array}{r} 1.80 \text { * } \\ -1.80 \text { * } \end{array}$	$\begin{array}{r} -1.35 \\ 1.35 \end{array}$
CBM-DL-164 \times UMI 1200	1.13 **	0.59 **	-21.69	-2.26	-0.72	-5.51 *	-2.19	0.68	-0.43	0.7	-22.68	1.71 *	-1.08
CBM-DL-164 \times UMI 1230	-1.13	-0.59 **	21.69 **	2.26	0.72 **	5.51 *	2.19	-0.68	0.43	-0.7	22.68	-1.71 *	1.08
$\begin{aligned} & \text { CBM-DL-200 } \times \text { UMI } 1200 \\ & \text { CBM-DL-200 } \times \text { UMI } 1230 \end{aligned}$	$\underset{\substack{0.62 \\-0.63}}{* *}$	$\begin{gathered} -0.41^{* *} \\ 0.41^{* *} \end{gathered}$	$\begin{aligned} & -6.24^{*} \\ & 6.24^{*} \end{aligned}$	$\begin{array}{r} 4.12 \\ -4.12 \end{array}$	$\begin{array}{r} 0.46 \\ -0.46 \end{array}$	$\begin{array}{r} -3.38 \\ 3.38 \end{array}$	$\begin{array}{r} 0.31 \\ -0.31 \end{array}$	$\begin{array}{r} 2.23 \\ -2.23 \end{array}$	$\begin{aligned} & 0.32 \\ & -0.32 \end{aligned}$	$\begin{gathered} 0.2 \\ -0.2 \end{gathered}$	$\begin{array}{r} 3.14 \\ -3.14 \end{array}$	$\begin{gathered} -11.84^{* *} \\ 11.84^{* *} \end{gathered}$	$\begin{array}{r} 2.35 \\ -2.35 \end{array}$
$\begin{aligned} & \text { CBM-DL- } 238 \times \text { UMI } 1200 \\ & \text { CBM-DL-238 } \times \text { UMI } 1230 \end{aligned}$	$\begin{aligned} & 1.13^{* *} \\ & -1.13 \end{aligned}$	$\begin{gathered} 1.09^{* *} \\ -1.09^{* *} \end{gathered}$	$\begin{array}{r} 5.89 \\ -5.89 \end{array}$	$\begin{array}{r} 6.89 \text { * } \\ -6.89 \end{array}$	$\begin{aligned} & 0.28 \\ & -0.28 \end{aligned}$	$\begin{array}{r} -0.88 \\ 0.88 \end{array}$	$\begin{array}{r} 2.56 \\ -2.56 \end{array}$	$\begin{array}{r} -0.19 \\ 0.19 \end{array}$	$\begin{aligned} & 2.32^{* *} \\ & -2.32^{* *} \end{aligned}$	$\begin{gathered} -0.8 \\ 0.8 \end{gathered}$	$\begin{array}{r} 3.99 \\ -3.99 \end{array}$	$-1.97 \text { * }$	$\begin{array}{r} -0.81 \\ 0.81 \end{array}$
CBM-DL-289 \times UMI 1200 CBM-DL-289 \times UM 1230 CBM-DL-33 \times UMI 1200 CBM-DL-313 \times UMI 1230	$\begin{gathered} 0.13 \\ -0.12 \\ 0.38^{*} \\ -0.37^{*} \end{gathered}$	$\begin{gathered} 0.59^{* *} \\ -0.59^{* *} \\ 0.09 \\ -0.09 \end{gathered}$	$\begin{array}{r} 2.06 \\ -2.06 \\ -0.49 \\ 0.49 \end{array}$	$\begin{gathered} 2.79 \\ -2.79 \\ 5.74 * \\ -5.74 \text { * } \end{gathered}$	$\begin{gathered} 0.56 \text { ** } \\ -0.566^{* *} \\ 1.26 .2 \\ -1.26 \end{gathered}$	$\begin{array}{r} -2.13 \\ 2.13 \\ 6.37^{*} \\ -6.37^{*} \end{array}$	$\begin{gathered} -3.31 * \\ 3.31 \\ 2.06 \\ -2.06 \end{gathered}$	$\begin{array}{r} 1.16 \\ -1.16 \\ 0.46 \\ -0.46 \end{array}$	$\begin{gathered} -0.18 \\ 0.18 \\ -1.93^{* *} \\ 1.93^{* *} \end{gathered}$	$\begin{gathered} -0.3 \\ 0.3 \\ -1.8 \\ 1.8 \end{gathered}$	$\begin{array}{r} 1.84 \\ -1.84 \\ 8.63 \\ -8.63 \end{array}$	$\begin{array}{r} 1.72 \text { * } \\ -1.72 \text { * } \\ -1.53 \text { * } \\ 1.53 \text { * } \end{array}$	$\begin{array}{r} 0.85 \\ -0.85 \\ 2.19 \\ -2.19 \end{array}$
CBM-DL-322 \times UMI 1200 CBM-DL-322 \times UMI 1230	$\underset{-0.87}{0.88}$	1.09 ** $-1.09^{* *}$	$\begin{aligned} & 13.64 \text { ** } \\ & -13.64 \end{aligned}$	3.49 -3.49	$\begin{array}{r} 0.41 \\ -0.41 \end{array}$	$\begin{array}{r} 5.99 \text { * } \\ -5.99 \text { * } \end{array}$	$\begin{aligned} & 0.06 \\ & -0.06 \end{aligned}$	$\begin{gathered} -2.14 \\ 2.14 \end{gathered}$	$\begin{aligned} & 2.57^{* *} \\ & -2.57^{* *} \end{aligned}$	$\begin{gathered} 0.2 \\ -0.2 \end{gathered}$	-2.2	$\begin{aligned} & 6.27^{* *} \\ & -6.27^{* *} \end{aligned}$	$\begin{array}{r} -1.79 \\ 1.79 \end{array}$
$\begin{aligned} & \text { CBM-DL-333 } \times \text { UMI } 1200 \\ & \text { CBM-DL-333 } \times \text { UMI } 1230 \\ & \text { CBM-DL- } 360 \times \text { UMI } 1200 \end{aligned}$	$\begin{gathered} 0.13 \\ -0.12 \\ -0.88 \end{gathered}$	$\begin{gathered} 0.34^{* *} \\ -0.34^{* *} \\ -0.91^{* *} \end{gathered}$	$\begin{aligned} & -0.61 \\ & 0.61 \\ & 1.14 \end{aligned}$	$\begin{aligned} & -6.38 \text { * } \\ & 6.38 \text { * } \\ & -2.31 \end{aligned}$	$\begin{aligned} & -0.59 \text { * * } \\ & 0.59{ }^{*} \\ & -0.49 \end{aligned}$	$\begin{aligned} & -5.88 \text { * } \\ & 5.88{ }^{*} \\ & -7.51^{* *} \end{aligned}$	$\begin{gathered} -1.44 \\ 1.44 \\ 5.064^{* *} \end{gathered}$	$\begin{array}{r} -0.94 \\ 0.94 \\ -1.37 \end{array}$	$\begin{gathered} 1.82 * * \\ -1.822^{* *} \\ -0.68 \end{gathered}$	$\begin{array}{r} -1.8 \\ 1.8 \\ -0.3 \end{array}$	$\begin{aligned} & -5.3 \\ & 5.3 \\ & 5.33 \end{aligned}$	$\begin{gathered} 0.93 \\ -0.93 \\ 5.66 \text { ** } \end{gathered}$	$\begin{array}{r} 1.94 \\ -1.94 \\ 0.12 \end{array}$
CBM-DL-360 \times UMI 1230 CBM-DL-435 \times UMI 1200	$\begin{aligned} & 0.87^{* *} \\ & 0.62^{* *} \end{aligned}$	$\begin{aligned} & 0.91^{* *} \\ & 0.59^{* *} \end{aligned}$	$\begin{array}{r} -1.14 \\ -15.61 \\ * * \end{array}$	$\begin{gathered} 2.31 \\ -11.31 \\ * * \end{gathered}$	$\begin{gathered} 0.49 \\ -1.62 \end{gathered}$	$\begin{gathered} 7.51 * * \\ -19.63 \end{gathered}$	$\begin{aligned} & -5.06 \text { ** } \\ & -6.04^{* *} \end{aligned}$	$\begin{array}{r} 1.37 \\ -2.14 \end{array}$	$-5.68 \text { ** }$	$\begin{aligned} & 0.3 \\ & 1.7 \end{aligned}$	$\begin{aligned} & -5.33 \\ & -3.91 \end{aligned}$	$\begin{aligned} & -5.66^{* *} \\ & -10.84^{* *} \end{aligned}$	$\begin{array}{r} -0.12 \\ 0.73 \end{array}$
CBM-DL-435 × UMI 1230	-0.63	-0.59 **	15.61**	11.31	1.62 **	19.63 **	6.04 **	2.14	5.68 **	-1.7	3.91	10.84 **	-0.73
CBM-DL-448 × UMI 1200	-1.38	-0.41 **	-0.86	1.07	0.68 *	8.49 **	-0.31	0.83	0.82	-0.3	-4.82	-6.40 **	-1.1
$\begin{aligned} & \text { CBM-DL-448 × UMI } 1230 \\ & \text { SE } \end{aligned}$	$\begin{array}{r} 1.38 * * \\ 0.1575 \\ \hline \end{array}$	$\begin{aligned} & 0.41^{* *} \\ & 0.0945 \\ & \hline \end{aligned}$	$\begin{array}{r} 0.86 \\ 3.0132 \\ \hline \end{array}$	$\begin{array}{r} -1.07 \\ 2.7926 \\ \hline \end{array}$	$\begin{array}{r} -0.68 \text { * } \\ 0.2593 \\ \hline \end{array}$	$\begin{gathered} -8.499^{* *} \\ 2.458 \\ \hline \end{gathered}$	$\begin{array}{r} 0.31 \\ 1.5679 \\ \hline \end{array}$	$\begin{array}{r} -0.83 \\ 1.0902 \\ \hline \end{array}$	$\begin{array}{r} -0.82 \\ 0.614 \\ \hline \end{array}$	$\begin{gathered} 0.3 \\ 0.8855 \\ \hline \end{gathered}$	$\begin{gathered} 4.82 \\ 13.0657 \\ \hline \end{gathered}$	$\begin{aligned} & 6.40^{* *} \\ & 0.7179 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.1 \\ 2.4642 \\ \hline \end{array}$

* and ${ }^{* *}$ significant at 5 and 1% level
in a parent specifies the existence of additive gene effects for that trait in the respective parent and this specifies gca
has an important role in choice of parents for hybridization programme (Muntean et al., 2014).
Table 6 Standard heterosis for thirteen yield and yield related traits in maize hybrids

Hybrid	DT	DS	PH	LL	LB	CPH	TL	CL	NK/R	NKR	CW	SPY	100 KW
CBM-DL-38 × UMI 1200	0	0	0.54	-17.66 **	-5.88	12.23 *	12.69	24.82 *	67.81 **	-53.33 **	-15.78*	-18.41 **	-7.83
CBM-DL-38 × UMI 1230	1.82 **	1.72 **	-4.89 *	-25.35 **	-2.94	11.51 *	0	17.73	-10.96	13.33	-21.62 **	-18.04 **	1.19
CBM-DL-80 × UMI 1200	5.45 **	6.90 **	-4.08	-26.18 **	-24.71 **	-16.55 **	-8.96	-0.71	-6.58	6.67	0.32	-5.91 **	-9.38
CBM-DL-80 × UMI 1230	9.09 **	8.62 **	-2.72	-12.26 **	-3.53	8.63	0	-15.25	-3.65	6.67	-19.68*	-15.48 **	5.99
CBM-DL-111 × UMI 1200	8.18 **	6.90 **	5.16 *	-20.89 **	-5.88	24.10 **	-5.22	2.48	-8.77	3.33	-21.00 **	-15.43 **	11.63
CBM-DL-111 × UMI 1230	10.91 **	10.34 **	-0.27	-14.15 **	-15.29 **	-8.63	0	-2.84	-4.38	-6.67	-11.12	-15.33 **	-5.58
CBM-DL-157 × UMI 1200	3.64 **	3.45 **	8.15 **	-16.71 **	-11.76 **	24.46 **	6.72	7.8	-5.11	-6.67	-20.19 *	-15.12 **	-0.26
CBM-DL-157 × UMI 1230	0	0	-1.09	-27.86 **	-7.06	-23.74 **	-12.69	-10.64	-0.73	0	-13.58	-15.06 **	6.8
CBM-DL-164 × UMI 1200	9.09 **	8.62 **	-10.00 **	-13.65 **	-21.76 **	1.44	8.21	29.08 *	-5.84	6.67	-15.24	-14.86 **	7.24
CBM-DL-164 \times UMI 1230	3.64 **	5.17 **	15.08 **	-9.19 *	-1.18	20.50 **	21.64 **	13.12	-13.15	-6.67	4.51	-14.71 **	12.42
CBM-DL-200 × UMI 1200	-1.82 **	-3.45 **	-2.04	-16.43 **	0	0	5.97	35.11 **	-6.58	6.67	-12.92	-14.50 **	9.1
CBM-DL-200 × UMI 1230	-5.45 **	-3.45 **	6.25 **	-26.18 **	-7.06	12.95 *	4.48	-2.84	-10.96	20	-14.55	-0.54	-9.83
CBM-DL-238 × UMI 1200	7.27 **	6.90 **	0.54	-12.26 **	-8.82 *	6.83	13.43 *	43.97 **	-2.19	6.67	-14.62	-17.37**	-7.36
CBM-DL-238 × UMI 1230	1.82 **	1.72 **	-4.35	-28.19 **	-11.76 **	12.59 *	-1.49	40.43 **	1.46	6.67	-16.96 *	-13.47 **	-4.13
CBM-DL-289 × UMI 1200	-1.82 **	0	1.41	-13.37 **	-7.06	-10.43 *	-10.45	34.04 **	-6.58	20	-15.07	-13.32 **	-3.09
CBM-DL-289 × UMI 1230	-3.64 **	-3.45 **	0.68	-20.17 **	-16.47 **	-1.08	9.7	11.35	-8.04	13.33	-15.63 *	-13.17 **	-11.49
CBM-DL-313 \times UMI 1200	0.91 *	1.72 **	3.53	-15.60 **	-1.76	-18.35 **	-13.43*	14.54	-8.04	0	-6.55	-13.06 **	14.73
CBM-DL-313 \times UMI 1230	-1.82 **	0	5.57 *	-28.97 **	-27.65 **	-33.45 **	-25.37 **	1.77	-2.92	0	-12.73	-9.61 **	-3.06
CBM-DL-322 × UMI 1200	0	0	17.12 **	-16.71 **	-9.41 *	23.74 **	-2.99	13.48	2.19	0	-13.75	-8.15 **	-3.04
CBM-DL-322 × UMI 1230	-4.55 **	-5.17 **	3.8	-25.07 **	-15.29 **	9.71	-2.99	37.59 **	-6.58	6.67	-10.96	-12.65 **	7.11
CBM-DL-333 × UMI 1200	-1.82 **	0.86 **	-2.99	-18.94 **	-18.82 **	-21.58 **	-14.93 *	13.48	-5.11	0	-15.57 *	-11.74 **	16.95
CBM-DL-333 × UMI 1230	-3.64 **	-1.72 **	-0.82	-5.29	-1.18	-1.44	-5.97	20.57	-1.46	13.33	-10.21	-10.80 **	0.88
CBM-DL-360 × UMI 1200	10.91 **	10.34 **	3.26	-11.70 **	-5.88	18.35 **	29.85 **	45.39 **	-17.53	20	-9.48	-6.25 **	8.24
CBM-DL-360 × UMI 1230	12.73 **	12.07 **	3.53	-7.13	9.41 *	43.17 **	0	58.51 **	-27.03	33.33	-12.93	-10.13 **	4.94
CBM-DL-435 × UMI 1200	14.55 **	13.79 **	-2.17	-30.36 **	-30.59 **	-17.27 **	-19.40 **	-4.96	-21.92	40.00 *	-9.45	-9.61 **	4.13
CBM-DL-435 × UMI 1230	10.91 **	10.34 **	16.30 **	-5.74	11.18 *	42.45 **	17.01 *	19.15	-3.65	13.33	-5.24	3.33 **	-3.44
CBM-DL-448 × UMI 1200	7.27 **	8.62 **	-5.16 *	-13.09 **	-1.18	33.45 **	7.46	43.62 **	6.58	6.67	-6.49	-6.99 **	1.39
CBM-DL-448 × UMI 1230	10.91 **	8.62 **	-2.72	-16.04 **	-13.53 **	12.23 *	9.7	25.53 *	-2.19	6.67	-1.53	1.44 *	6.66
SE	0.2125	0.127	4.055	3.8023	0.3485	3.4186	2.1241	1.5875	8.5295	2.8389	18.0497	1.1311	3.3319

The hybrids viz., CBM-DL- $360 \times$ UMI1200, CBM-DL$435 \times$ UMI1230, and CBM-DL- $448 \times$ UMI1230 recorded positive sca effect for single plant yield (Table 5). Similar kind of observations were made in Maize by Choudhary et al., 2000; Kuselan et al., 2017; and Prakash et al., 2004. For the trait number of kernels per row, the hybrids CBM-DL- $322 \times$ UMI1200, and CBM-DL- $435 \times$ UMI1230 scored positive sca effect as like Iqbal et al., 2007. The negatively significant sca effect had been scored by CBM-DL- $360 \times$ UMI1200, CBM-DL- $435 \times$ UMI1230 and CBM-DL- $448 \times$ UMI1200 for days to tasseling which could be utilized for earliness to reduce the duration of crop as similar kind of report earlier by Bharti et al., 2017. The hybrids viz., CBM-DL- $322 \times$ UMI1200 and CBM-DL$435 \times$ UMI1230 scored positive and significant sca effect for single plant yield and the number of kernels per row which could be used to increase the productivity through a single cross-hybridization programme. Similar kind of report made earlier in maize by Iqbal et al., 2007.

The standard heterosis expressed by 28 crosses for all quantitative traits is presented in Table 6. The Standard Heterosis ranged from -21.62 to $4.51,-11.49$ to 16.95 and -18.41 to 3.33 for cob weight, 100 kernel weight, and single plant yield, respectively with wide range of variability. Similar kind of observations were made in maize by Amiruzzaman et al., 2010; Mohammad et al., 2016 and Uddin et al., 2006. In common, significant heterosis over the standard check, CO 6 was observed for two yield related traits in cross combinations namely, DL-435 \times UMI 1230 and CBM-DL-448 \times UMI 1230 Hence, these hybrids were judged as the best crosses suited for heterosis breeding. The hybrids viz., CBM-DL$435 \times$ UMI1230 and CBM-DL- $448 \times$ UMI1230 recorded a significant positive heterosis for single plant yield Significant positive hetererosis for yield is reported earlier by Bharti et al., 2017 while using UMI1200 and UMI1230 inbred lines. For the trait cob length CBM-CBM-DL- 360 \times UMI1230, CBM-DL- $448 \times$ UMI1200 and CBM-DL- 448 \times UMI1230 hybrids recorded significant and positive standard heterosis. Negatively significant heterosis was recorded in CBM-DL- $200 \times$ UMI1230 and CBM-DL- 322 \times UMI1230 for days to tasseling. Overall performance of the standard heterosis showed a positive significant standard heterosis for single plant yield in CBM-DL$435 \times$ UMI 1230, and CBM-DL- $448 \times$ UMI1230 hybrids and negative significant standard heterosis for days to tasseling in the hybrids I CBM-DL- $200 \times$ UMI1230 and CBM-DL- $322 \times$ UMI1230 over its standard check. Thus, these hybrid combinations could be effectively utilized for heterosis breeding. The importance of identification of heterotic combinations in maize hybrid programme is emphasized by Nandhitha et al., 2018.
Overall performance of the parents implies that the lines viz., CBM-DL-448, CBM-DL- 435 and CBM-DL- 360 and the tester UMI1230 are the good combiners based on per se performance and single plant yield which could be used as a potential genetic material for hybridization breeding programme. The hybrids viz., CBM-DL- $435 \times$ UMI1230, CBM-DL- $448 \times$ UMI1230 and CBM-DL- $360 \times$

UMI1200 are well recommended for producing the hybrids with a higher yield based on mean performance, positive significant standard heterosis and high significant positive sca effect which is useful to exploit high yield potential.

ACKNOWLEDGEMENT

The Core projects for research activities at Colleges and Research stations of Tamil Nadu Agricultural University Phase-I (CPMB/CBE/PBT2012/CP004) funded by the Agricultural Department (AU), Government of Tamil Nadu is kindly acknowledged.

REFERENCES

Ambikabathy, A., Selvam, N. J., Selvi, D. T., Dhasarathan, M., Vairam, N., Renganathan, V., and Vanniarajan, C. 2019. Determination of Combining Ability and Heterosis for Yield and Yield Related Traits in Maize Hybrids Based on Line× Tester Analysis.

Amiruzzaman, A., Islam, M. A. Hassan, L. and Rohman, M. M. . 2010. Combining ability heterosis for yield and component characters in maize. Academic J. of PI. Sci., 3(2), 79-84.

Asif M. Iqbal, F. A. N., S.A. Wani, Rehana Qadir and Zahoor A. Dar. 2007. Combining Ability Analysis for Yield and Yield Related Traits in Maize (Zea mays L.). International Journal of Plant Breeding and Genetics, 1(2), 101-105. [Cross Ref]

Aslam, M., Sohail, Q., Maqbool, M. A., Ahmad, S., and Shahzad, R. 2017. Combining ability analysis for yield traits in diallel crosses of maize. Journal of Animal and Plant Sciences, 27(1), 136-143.

Bharti, B., Dubey, R. B., Kumar, A., Bind, H. N., and Jat, B. S. 2017. Combining ability analysis for grain yield and its contributing traits in maize (Zea mays L.) over environments. Electronic Journal of Plant Breeding, 8(4). [Cross Ref]

Choudhary, A. K., L.B. Chaudhary and K.C. Sharma. 2000. Combining ability estimates of early generation inbred lines derived from two maize populations. Indian J. Genet. Plant Breed, 60, 55-61.

Darwin, C. 1876. The effects of cross and self fertilisation in the vegetable kingdom. London : Royal College of Physicians of, Edinburgh: John Murray.

Das, U. R. a. M. H. I. 1994. Combining ability and genetic studies for grain yield and its components in maize (Zea mays L.). Bangladesh J. Pl. Breed. Genet., 7(2), 41-47.

Debnath, S. C., K. R. Sarker and D. Singh. 1988. Combining ability estimates in maize (Zea mays L.). Annals of Agric. Res. India, 9(1), 37-42.

Falconer, D. S. 1981. Introduction to quantitative genetics (2 ed. Vol. 167). Longmans Green, London/New York.

FAO. 2019. World food and agriculture- Statistica pocketbook.

Griffing, B. 1956. Concep of general and specific combining ability in relation to diallel cross systems. .Aust.J.Biol.Sci, 9, 463-493. [Cross Ref]

Izhar, T., and Chakraborty, M. 2014. Genetic Analysis of Maize (Zea mays L.) Genotypes for Baby Corn, Green Ear and Grain Yield. Maize Genomics and Genetics. [Cross Ref]

Karim, A. N. M. S., Ahmed, S., Akhi, A. H., Talukder, M. Z. A., and Mujahidi, T. A. 2018. Combining ability and heterosis study in maize (zea mays l.) hybrids at different environments in Bangladesh. Bangladesh Journal of Agricultural Research, 43(1), 125-134. [Cross Ref]

Kempthorne, O. 1957. An introduction to Genetic Statistics. New York. : John Wiley And Sons, Inc.

Kulembeka HP, F. M., Herselman L, et al. . 2012. Diallel analysis of field resistance to brown streak disease in cassava (Manihot esculenta Crantz) landraces from Tanzania. Euphytica, 187(2), 277-288. [Cross Ref]

Kuselan, K., N, M., R, R., and Paranidharan, V. 2017. Combining ability analysis for yield and its component characters in maize (Zea mays L.). Electronic Journal of Plant Breeding, 8, 591-600. [Cross Ref]

Lal, M., Singh, D and Dass, S. . 2011. General and specific combining ability studies in maize using line x tester design. Agricultural Science Digest, 31(1), 8-13.

TNAUSTAT-Statistical package. . 2014. Manivannan, N. [Software]

Mohammad Quamrul Islam Matin, M. G. R., A. K. M. Aminul Islam, M. A. Khaleque Mian, Nasrin Akter Ivy, Jalal Uddin Ahmed. 2016. Combining Ability and Heterosis in Maize (Zea mays L.). American Journal of BioScience, 4(6), 84-90.

Muntean, L., Has, I., Has, V., Gulea, A., \& Muntean, S. (2014). Combining ability for yield in maize synthetic populations obtained from local populations. Romanian agricultural research, 31, 3-10.

Nandhitha, G., Ganesan, K. N and Ravikesavan, R. 2018. Heterosis and combining ability studies in single cross hybrids synthesized with diverse inbred lines of maize (Zea mays L.). Electronic Journal of Plant Breeding, 9(4). [Cross Ref]

Prakash, S. a. D. K. G. 2004. Combining ability for various yield component characters in maize (Zea mays L.). J. Res. Birsa Agric. Univ, 16: 55-60.

Roy, N. C., S.U. Ahmed. A. S. Hussain and M. M. Hoque. 1998. Heterosis and combining ability analysis in maize (Zea mays L.). Bangladesh J. Pl. Breed. Genet., 11(1\&2), 35-41.

Sanghi, A. K., K. N. Agarwal and M. I. Qadri. 1983. Combining ability for yield and maturity in early maturity maize under high plant population densities. Indian J. Genetics., 43, 123-128.

Sprague, G. F., and Tatum, L. A. 1942. General vs specific combining ability in singlecrossesofcorn. J.Am.Soc. Agron, 34, 923-932. [Cross Ref]

Uddin, S. M., Khatun,F., Ahmed, S., Ali, M. R. and Begum, S. A.2006. Heterosis and combining ability in field corn (Zea mays L). Bangladesh J. Bot, 35(2), 109116.

Uddin, M., Amiruzzaman, M., Bagum, S., Hakim, M., Ali, M. J. B. J. o. P. B., and Genetics. 2008. Combining ability and heterosis in maize (Zea mays L.). 21(1), 21-28. [Cross Ref]

