

Research Article

Genotypic variation and hierarchical clustering of Palmyrah (*Borassus flabellifer* L.)

V. Ponnuswami* and S. Chitra

Horticultural College and Research Institute, Periyakulam – 625 604 *Email: swamyvp2002@yahoo.co.in

(Received:09 Aug 2011; Accepted:23 Aug 2011)

Abstract:

The genotypic divergence and hierarchical clustering based on morphological, fruit and seed traits was studied in 48 palmyrah genotypes of diverse genetic background. Significant differences were recorded for morphological, fruit and seed characters among genotypes. Highest variability was observed in fruit weight followed by Neera yield and Tree height. Multivariate hierarchical cluster analysis was done to classify genotypes according to their degree of similarity in morphological, fruit seed and pooled traits.

Key words: Borassus flabellifer L., genotypes, variability hierarchical clustering.

Introduction:

Palmyrah (*Borassus flabellifer* L.) palms are found in abundance in the peninsula. In some places they grow wild and in others they are cultivated as bund or border crop. Increasing exploitation of the palmyrah indiscriminately threatens the future availability of palm raw materials so important to rural populations. Palmyrah genotypes are distributed in many part of India and exhibit high variability in morphological characters (Kavoor 1983).

It has been reported that the genetic variation in the traits is probably due to the joint action of many genes/quantitative trait loci (QTLs). Multivariate statistical techniques have been suggested to measure genetic and phenotypic divergence among genotypes to aid in identifying potential parents for hybridization programme (Rai et al. 2003). Genetic diversity studies in palmyrah was already reported by Louis et al. 1991; Sankaralingam et al. 1999; Sankaralingam and Khan 2001; Paramaguru and Venkatraman 2004. In the present paper we describe the genetic variability and hierarchical clustering of genotypes based on morphological, fruit traits and neera the sweet sap yield. The present investigation was undertaken to assess the genetic variability and hierarchical clustering of palmyrah genotypes based on morphological, trait seed and pooled traits of palmyrah.

Materials and Methods

About 281 different palmyrah genotypes were collected from different palm growing regions of India. Out of which forty eight palmyrah were identified as elite genotypes that represented different palm growing regions of India were taken for this study during 2005-2008.

The height of the palm was measured from ground level to the crown and expressed in centimeters (cm). The trunk girth (cm) was measured at one metre height from the ground level. The total number of photosynthetically active green leaves were counted at the time of neera collection and expressed as number/tree. The petiole length (cm) was measured from the point of clasping with trunk to the starting the previous season was counted and expressed in numbers per palm. Number of fruits per bunch was computed by dividing the total number of fruits in a tree by total number of bunches produced in the current year. The various fruit parameters viz, fruit length (cm), fruit circumference (cm), fruit weight (g) and flesh weight (g) were quantified at random for five fruits in each bunch in a palm and the average was derived. The differenct seed parameters like individual seednut weight (g), seed length (cm) and seed circumference (cm) were taken for 25 seeds per palm at random and the average was derived. During the survey, the sequential neera yield (litres per palm) per season of 90 to 100 days was recorded by collecting in earthen containers with inside lime coating (Davis and Johnson, 1987). The number of traits observed was 15 with break down of five morphological attributes related to plant type, six fruits traits related to fruit parameters and four seed traits including Neera yield.

The number of traits observed was 15 with break down of 5 morphological, 6 fruit and 4 seed traits including neera yield. Morphological traits includes

tree height, trunk girth, total number of leaves, length of petiole, total length of leaves (cm). Fruit traits includes number of bunches/tree, number of fruits/bunch, fruit length (cm) fruit weight (g), flesh weight (g) of shreds while seed traits include seed weight (g), seed length (cm), circumference of seed (cm) and neera yield (l/season/tree).

The differences in mean values between the accessions were tested using one-way analysis of variance (ANOVA) and differences were considered to be significant at P < 0.05. The data on all the traits were computed and agglomerative hierarchical clustering was done using SAS software version 4.0. The clustering was based on the squared Euclidean distances and the average linkage between groups was taken as the average of the distance between all pairs of cases with one member of each group.

Results and discussion

The analysis of data for all the component characters studied showed considerable variation among the genotypes is presented in Table 2 with the increasing diversity of germplasm collected from various sources. Hierarchical cluster analysis was conducted for morphological, fruit, seed and pooled traits. Authority distance between all pairs of genotypes was calculated using squared Euclidean distance method and genotypes were clustered based on ward's method.

Since these clusters are group of individuals possessing similar characters mathematically gathered into the same cluster, these individuals are supposed to exhibit higher external heterogeneity. Cluster analysis of genotypes based on morphological traits expressed 2 clusters at first node with 24 and 24 genotypes (**Fig.1A**). The first cluster further subdivided into 2 clusters with 9 and 15 genotypes and the second cluster further subdivided into two clusters with 16 and 8 genotypes. When we observed the morphological grouping, the genotypes collected from West Bengal and Kerala were distantly different fromeach other.

On the basis of fruit traits, forty eight genotypes were divided into 2 clusters at first node with 30 and 18 genotypes (**Fig. 1B**). These 30 genotypes were further divided into clusters of 19 and 11 genotypes and the 18 genotypes were further subdivided into 8 and 10 genotypes. However, in seed traits, clustering the forty eight palmyrah genotypes were divided into 2 clusters at first node with 42 and 6 genotypes (**Fig. 1C**). These 42 genotypes further divided into 14 and 28 genotypes. When we observed the morphological clustering the genotypes were collected from same location/state are in the same cluster group. So, this morphological clustering indicated that the prevalence of geographical diversity among these evaluated palmyrah genotypes. Clustering based on seed traits including neera (the sweet sap) yield, the genotypes K3, BFPU 23, BFPU 25, TNS 20, BFPU 26 and BFPU 27 were entirely different from other genotypes. Further as an exercise, all the three types of traits were considered together to study the overall multivariate picture of palmyrah genotypes. It was surprising to observe more or less the same clustering pattern, which was based on morphological traits (Fig. 1D). In other words the differences observed in fruit and seed behaviour of genotypes were masked by morphological traits. So the selection based on morphological characters will be of much useful for the palm breeders to select highly diversified parents for their future breeding programme.

The information obtained through clustering analysis will assist palmyrah breeders in identifying a limited number of highly differentiated elite genotypes useful in developing dwarf, high neera yielding varietie/s or hybrids

References

- Davis, T.A. and Johnson, D.V. 1987. Current utilization and further development of the palmyrah palm (*Borassus flabellifer* L.) *Econ. Bot.*, **41**: 247-266.
- Kovoor, A. 1983. The palmyrah palm; Potential and perspectives. FAO plant production and protection paper. FAO, Rome.
- Louis, T.H., Williams, B.C. and Mathai, A.M. 1991. Palmyrah palm. The state tree of Tamil Nadu. In proceedings of the seminar on modernizing the palmyrah industry, February 18 to 19, Haldane Research centre, Nagercoil. Tamil Nadu, 16 pp.
- Paramaguru, P. and Venkatraman, K.T. 2004. Studies on germplasm of palmyrah palm collected from rainfed ecosystems of Andra Pradesh and Tamil Nadu. J.P.C. 32, 77-79.
- Rai, M., Prasanna, H.C., Singh, A., Kumar, S. and Kalloo, G. 2003. Performance, inter trait relationship and hierarchical clustering in advance lines of tomato (*Lycopersicon esculentum* Mill.). Veg. Sci. **30**(2): 155-58.
- Sankaralingan, A., Hemalatha, G. and Ali, A.M. 1999. A treatise on palmyrah. AICRP on palms. AC & RI, Killikulam, TNAU.
- Sankaralingan, A. and Khan, H.H. 2001. Palmyrah palms in Tamil Nadu, India, Palms, **45**(2): 97-99.

Electronic Journal of Plant Breeding, 2(3):348-356 (Sep 2011) ISSN 0975-928X

Table 1. List of elite genotypes with place of collection

Genotype	Name of the cluster	Village	District	State		
TNPO 01		Sendrampalayam				
TNPO 02	Pollachi	Sendrampalayam	Coimbatore	Tamil Nadu		
TNPO 08		Jameen kaliapuram				
TNPM 06		Pillai madam				
TNPM 08 TNPM 09	Pillai Madam	Adaikalappattinam	Ramnad	Tamil Nadu		
	Filiai Wadaili	Adaikalappattinam	Kallillau	Tallill Inadu		
TNPM 10		Adaikalappattinam				
TNTK 01		Adhioothu				
TNTK 02	Tenkasi	Keelachsurandai	Trinelveli	Tamil Nadu		
TNTK 06	Telikasi	Parankunrapuram	Timerven	Tallill Inadu		
TNTK 08		Maruthupuram				
TNT 01		Vadamalaipalayam				
TNT 06	Tuticorin	Soorianallor	Tuticorin	Tamil Nadu		
TNT 08	I uucorini	Thiranchendur	Tuttcorifi	i anni inadu		
TNT 10		Thiranchendur				
KVIC 02						
KVIC 07	WWO	KVIC	Chennai	Tamil Nadu		
KVIC 09	KVIC	KVIC	Chennai	Tamii Nadu		
KVIC 10						
K2		Palakkad				
K3	Kerala	Palakkad	Palakkad	Kerala		
K4		Kadumthuruthi				
BFNAM 01		Nambiyur				
BFNAM 02		Nambiyur				
BFNAM 07	Nambiyur	Piliyampalayam		Tamil Nadu		
BFNAM 09	2	Piliyampalayam				
BFNAM 12		Sanar Pudur	E. J.			
BFNAM 17		Kasipalayam	Erode			
BFNAM 22		Kasipalayam				
BFNAM 27		Elathur				
BFNAM 31		Kadathur				
BFNAM 32		Puduchooripalayam				
BFPU 15		Thethampakkam				
BFPU 23		Shompet	D 1 1	D 1 1		
BFPU 24	Puduchery	Shompet	Puduchery	Puduchery UT		
BFPU 25		Shompet				

http://sites.google.com/site/ejplantbreeding

Peer Reviewed Journal

Electronic Journal of Plant Breeding, 2(3):348-356 (Sep 2011) ISSN 0975-928X

Table 1. Contd...

Genotype	Name of the cluster	Village	District	State	
BFPU 26		Shompet			
BFPU 27		Shompet			
WBP 08		Dostopur			
WBP 09	Sub-hub of Kolkata	Dostopur	Kolkata	West Pong	
WBP 12		Dauli	Noikata	West Benga	
WBP 14		Ramgar			
TNS 05	Sankagiri	Rayalur			
TNS 13		Rayalur			
TNS 15		Chinnagoundanur	Salem	Tamil Nadu	
TNS 17		Chinnagoundanur	Saleili	Tallill Inadu	
TNS 18		Varuthampatti			
TNS 20		Varuthampatti			

Electronic Journal of Plant Breeding, 2(3):348-356 (Sep 2011) ISSN 0975-928X

Table 2. Descriptive statistics of morphological, fruit and seed traits of palmyrah genotypes

Statistical parameters	Tree height (cm)	Trunk girth (cm)	No. of leaves	Length of petiole (cm)	Length of leaves (cm)	No. of bunches /tree	No. of fruit bunch	Fruit length (cm)	Fruit Cir. (cm)	Wt. of fruit (g)	Wt. of flesh (g)	Wt. of seed (g)	Length of seed (cm)	Cir of seed (cm)	Neera yield (lt/season)
Average	576.87	92.12	24.66	81.68	150.56	10.27	14.41	17.87	31.22	524.10	119.69	128.52	15.00	17.70	396.53
Standard error	9.99	4.56	1.49	33.11	6.51	0.41	0.93	0.44	0.73	28.14	6.72	5.05	0.39	0.55	11.07
Median	565.00	93.50	26.50	80.00	140.00	10.00	13.50	17.50	31.00	500.50	110.30	136.90	14.60	17.80	394.00
Standard deviation	69.22	31.60	10.34	21.55	45.16	2.90	6.47	3.08	5.09	194.96	46.60	35.03	2.76	3.84	76.69
Minimum	450.00	25.00	8.00	45.00	80.00	6.00	1.00	11.00	19.00	175.00	32.40	53.60	10.00	11.50	214.75
Maximum	750.00	150.00	43.0	125.00	250.0	16.00	32.0	24.50	42.00	1039.00	240.50	171.20	24.60	30.00	540.50

lierarchical Clustering
Method = Ward
Dendrogram
* TNPO 01
* TNPO 02
* TNPO 08
* WBP 08
* KVIC 02
KVIC 07
* KVIC 10
* KVIC 09
TNS 05
* TNPM 06
TNPM 10
■ K2
■ K3
[•] K4
TNPM 08
* TNTK 08
TNPM 09
TNTK 06
^a TNT 01
TNT 06
TNT 10
BFNAM 01
BFNAM 09
BFNAM 31
BFNAM 17
BFPU 23 BFPU 23
⁸ BFNAM 12 ⁹ BFNAM 22
BFNAM 32
BFPU 24
* BFPU 25
BFPU 26
* TNS 13
* TNS 15
* WBP 09
* WBP 12
* WBP 14
BFNAM 02
BFNAM 07
TNS 18
^a TNS 17
TNS 20
BFNAM 27
BFPU 27
BFPU 15
*
!
- manufacture the second se

Fig. 1A. Dendrogram based on multivariate hierarchical cluster analysis for morphological traits

lierarchical Clustering
Method = Ward
Dendrogram
÷
* TNPO 01
TNPO 08
TNPO 02
BFNAM 01
BFNAM 02
BFNAM 12 TNS 15
BFNAM 07
BFNAM 17
WBP 08
TNS 13
TNS 18
WBP12
WBP 14
TNS 20
BFNAM 22
BFNAM 27
BFNAM 31 BFNAM 32
BFNAM 32
KVIC 02 ■ KVIC 10
* KVIC 07
* KVIC 09
[®] BFPU 15
BFPU 23
BFPU 25
TNS 05
BFPU 24
BFPU 26
* TNPM 06 * TNPM 08
TNPM 08
TNT 06
■ K2
• K3
■ K4
TNS 17
TNPM 09
TNTK 01 TNTK 02
TNTK 08
BFNAM 09
■ WBP 09
TNTK 06
TNT 08
* TNT 01
× ×
×××*
20000000000000000000000000000000000000
70000000000000000000000000000000000000

Fig. 1B. Dendrogram based on multivariate hierarchical cluster analysis for fruit traits

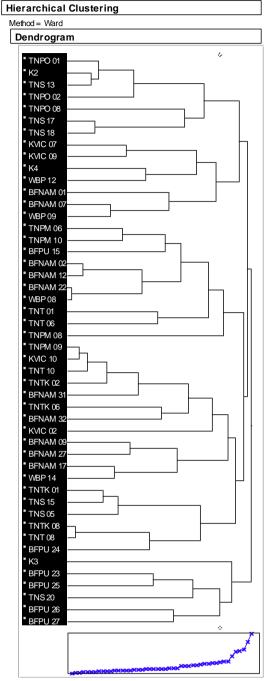


Fig. 1C. Dendrogram based on multivariate hierarchical cluster analysis for neera yield

Fig. 1D. Dendrogram based on multivariate hierarchical cluster analysis for pooled traits