Research Note
 Correlation and path analysis in Virginia groundnut (Arachis hypogaea L.)

R. P. Gupta, J. H. Vachhani*, V. H. Kachhadia, M. A. Vaddoria and H. R. Barad
Main Oilseeds Research Station, Junagadh Agricultural University, Junagadh-362 001 (Gujarat).
E-mail: jhvachhani@jau.in

(Received:26 Aug 2014; Accepted:29 Dec 2014)

Abstract

Sixty diverse genotypes of Virginia groundnut were evaluated during kharif 2013 for genetic parameters viz., correlation and path analysis. The magnitudes of genotypic correlation coefficients were higher as compared to the corresponding phenotypic correlation coefficients. The pod yield per plant had highly significant and positive correlations at phenotypic levels with number of mature pods per plant, 100-pod weight, shelling out-turn, kernel yield per plant, biological yield per plant and harvest index. Path analysis revealed that the biological yield per plant and harvest index had high and positive direct effects on pod yield per plant.

Keywords

Groundnut, correlation, path analysis

Groundnut is an important oil seed crop. The knowledge of association among the yield and yield contributing characters would be of great help in constructing a suitable plant type and in planning breeding programme. However, the correlation coefficient does not give any indication about comparative magnitude of contribution made by various component characters. Therefore, genotypic path coefficient analysis was carried out to find the direct and indirect effects of yield components and their correlation with pod yield per plant. Pod yield, a polygenic trait, is influenced by its various components directly as well as indirectly via other traits, which create a complex situation before a breeder for making selection. Therefore, path coefficient analysis could provide a more realistic picture of the interrelationship, as it considers direct as well as indirect effects of the variables by partitioning the correlation coefficient.

Sixty genotypes of groundnut were sown in a Randomized Block Design (RBD) with three replications during kharif 2013. Each genotype was accommodated in a single row of 3.0 m length with a spacing of 60 cm between rows and 15 cm between plants within the row. The experiment was surrounded by two guard rows to avoid damage and border effects. The fertilizers in the experimental area was applied at the rate of $12.5 \mathrm{~kg} \mathrm{~N}_{2}$ ha $^{-1}$ and $25.0 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5}$ ha $^{-1}$ as it is a recommended dose for kharif cultivation of groundnut in the region. Other recommended agronomical practices in vogue were followed for reaping good crop. Data were recorded on randomly selected five plants from each genotype and average value was used for the statistical analysis for 15 characters viz., days to 50% flowering, days to maturity, plant height, number of
primary branches per plant, number of mature pods per plant, 100-pod weight, 100- kernel weight, sound mature kernel (\%), shelling out-turn, biological yield per plant harvest index, kernel yield per plant, pod yield per plant, oil content and protein content. The data subjected to different statistical analysis viz., Phenotypic and genotypic correlation coefficients of all the characters were worked-out as per Al-Jibouri et al. (1958) and path coefficient analysis was carried-out as per the method suggested by Dewey and Lu (1959).

Analysis of variance revealed that highly significant differences among the genotypes were observed for all the traits. Which indicating the presence of good amount of genetic variability among the material studied. The genotypic correlations were higher than the phenotypic correlation for most of the character studied that indicating least environmental effects on the expression of the traits (Table 1). In the present study, pod yield per plant was found to be significantly and positively correlated with number of mature pods per plant, 100pod weight, 100-kernel weight, sound mature kernels, shelling out-turn, biological yield per plant, harvest index, kernel yield per plant, and protein content at genotypic and phenotypic levels. Such positive interrelationship between pod yield per plant and these attributes has also been reported in groundnut by several researchers.

The positive genotypic association has been reported between pod yield per plant and number of mature pods per plant by Choudhary et al.,(2013); for 100-pod weight by John et al., (2005); for 100-kernel weight by John et al.,(2009), for biological yield per plant by Babariya et al.,(2012) and Choudhary et al.,(2013); for
harvest index by Suneetha et al., (2004) and Babariya et al.,(2012); for shelling out-turn by Vekariya et al.,(2010); for kernel yield per plant and sound mature kernels by Meta and Monpara,(2010).

Thus, on the basis of correlations, number of mature pods per plant, 100-pod weight, 100-kernel weight, sound mature kernels, shelling out-turn, biological yield per plant, harvest index kernel yield per plant and protein content were proved to be the outstanding characters influencing pod yield in groundnut and they can serve as marker indicator characters for improvement in pod yield and need to be given importance in selection to achieve higher pod yield.

Pod yield per plant exhibited negative correlation with 50% flowering, at phenotypic levels. The negative association between these traits has been reported by John et al. 2005. The days to 50% flowering, which had highly significant and positive association with days to maturity and number of primary branches per plant at genotypic level, is an important component in identifying and deciding the duration of the crop. These traits i.e., days to 50% flowering and days to maturity had positive interrelationship with number of primary branches per plant at genotypic level for both and phenotypic level for days to maturity.

This relationship indicated that the improvement in one character would bring about the improvement in another, which in turn, automatically led to increase in pod yield. Similar the positive associations were also observed earlier scientist between days to 50 \% flowering and days to maturity by John et al., (2005); John et al., (2009) and Choudhary et al., (2013); for days to 50% flowering and primary branches per plant by John et al., (2009). Channayya et al., (2011) reported positive interrelationship of days to 50% flowering and days to maturity with Number of primary branches per plant.

The present results on correlation coefficients revealed that days to 50% flowering, primary branches per plant, number of mature pods per plant, 100-pod weight, 100kernel weight, kernel yield per plant, biological yield per plant and harvest index were the most important attributes and may contribute considerably towards higher pod yield. The interrelationship among yield components would help in increasing the yield levels and therefore, more emphasis should be given to these components while selecting better types in groundnut.

The path coefficient analysis indicated that the biological yield per plant and harvest index exhibited high and positive direct effects on pod yield per plant (Table 2). Days to maturity and shelling out-turn
exhibited moderate and positive direct effects towards pod yield. Thus, these characters turned-out to be the major components of pod yield. The character like kernel yield per plant exhibited moderate-high and negative direct effects towards pod yield. The maximum and positive direct effects of biological yield per plant and harvest index have also been reported by Suneetha et al., (2004); Choudhary et al. (2013), for harvest index. For biological yield per plant similar result has been reported by Choudhary et al. (2013). Shelling out-turn exhibited moderate and positive direct effects towards pod yield similar result has been reported by Suneetha et al. (2004).

The character like days to maturity, number of mature pods per plant, 100-pod weight, 100-kernel weight, sound mature kernels, shelling out-turns and protein content exhibited low and positive direct effects with pod yield per plant. While, the days to 50% flowering, plant height, number of primary branches per plant and oil content exerted low and negative direct effect towards pod yield per plant. The biological yield per plant and harvest index exhibited high and positive direct effects on pod yield resulting in its significant and positive association with pod yield. Similarly, kernel yield per plant had low and negative effect on pod yield but, it contributed indirectly by exerting negative indirect effects via biological yield per plant and harvest index.

References

Al-Jibouri, H. A., Miller, P. A. and Robinson, H. F. 1958. Genotypic and environmental variances in upland cotton cross of interspecific origin. Agron. J., 50: 633-635.
Babariya, C. A. and Dobariya, K. L. 2012. Correlation coeffic ient and path coefficient analysis for yield components in groundnut (Arachis hypogaea L.). Electron. J. Plant Breed., 3(3): 932-938.
Channayya, P., Hiremath, Nadaf, H. L. and Keerthi, C.M. 201 1. Induced genetic variability and correlation studies for yield and its component traits in groundnut (Arachis hypogaea L.). Electronic Journal of Pl. Br., 2(1): 135-142.
Choudhary, M.; Sharma, S. P.; Dashora, A. and Maloo, S. R. 2013. Assessment of genetic variability, correlation and path analysis for yield and its components in groundnut (Arachis hypogaea L.). J. Oilseeds Res., 30(2): 163-166.
Dewey, D. R. and Lu, K. H. 1959. Correlation and path analysis of component of created wheat grass seed production. Agron. J., 51: 513-518.
John, K., Vasanthi, R. P. and Venkateswarlu, O. 2009. Studies on variability and association in Spanish bunch groundnut (Arachis hypogaea L.). Legume Res., 32(1):65-69.
John, K., Vasanthi, R. P., Venkateswarlu, O. and Sudhakar, P. 2005. Genetic variability and correlation studies

Electronic Journal of Plant Breeding, 6(1): 248-252 (Mar 2015)
ISSN 0975-928X
among F_{1} and parents in groundnut (Arachis hypogaea L.). Legume Res., 28(4):262-267.
Meta, H. R. and Monpara, B. A. 2010. Genetic variation and trait relationships in summer groundnut, (Arachis hypogaea L.). J. Oilseeds Res., 27(1): 8-11
Suneetha, K., Dasarada, C., Rami Reddy and Ramana, J. V. 2004. Genetic variability and character association in groundnut (Arachis h ypogaea L.). National Symposium: Enhancing Productivity of Groundnut for Sustaining Food and Nutritional Security. NRCG, Junagadh, October 1112, 2004, pp. 19-20.
Vekariya, H. B., Khanpara, M. D., Vachhani, J. H., Jivani, L. L.,Vagadiya, K. J. and Revar, H. J. 2010. Correlation and path analysis in bunch groundnut (Arachis hypogaea L.). Internal. J. Plant Sci., 6(1):11-15.

Electronic Journal of Plant Breeding, 6(1): 248-252 (Mar 2015)

Table 1 Genotypic (\mathbf{r}_{g}) and phenotypic $\left(\mathrm{r}_{\mathrm{p}}\right)$ correlation coefficients among 15 characters in Virginia groundnut

Characters		$\begin{gathered} \text { Days to } \\ 50 \% \\ \text { flowering } \\ \hline \end{gathered}$	Days to maturity	Plant height (cm)	No. of primary branches /plant	No. of mature pods/plant	$\begin{gathered} \text { 100-pod } \\ \text { weight (g) } \end{gathered}$	100-kernel weight (g)	Sound mature kernel $(\%)$ 0.24$)$	Shelling out-turn (\%)	Biological yield/plant (g)	\qquad	$\begin{gathered} \hline \text { Kernel } \\ \text { yield } \\ \text { /plant }(\mathrm{g}) \\ \hline \end{gathered}$	Oil content (\%)	$\begin{gathered} \text { Protein } \\ \text { content (\%) } \end{gathered}$
Pod yield/plant (g)	r_{g}	0.001	0.071	0.143	0.022	0.132	0.294**	0.229**	0.241**	0.382**	0.375**	0.604**	0.914**	0.090	0.254**
	r_{p}	-0.008	0.055	0.09	0.024	0.271**	0.245**	0.189*	0.177*	0.233**	0.292**	0.696**	0.914**	0.062	0.178*
Days to 50\% flowering	r_{g}		0.313**	-0.756**	0.246**	0.080	-0.02	-0.314**	-0.086	-0.404**	0.124	-0.122	-0.181*	0.104	0.102
	r_{p}		0.207**	-0.515**	0.106	-0.002	-0.020	-0.264**	-0.072	-0.230**	0.066	-0.057	-0.132	0.086	0.078
Days to maturity	r_{g}			-0.106	0.319**	-0.004	-0.131	-0.29	-0.183*	-0.022	-0.032	0.048	0.053	-0.053	0.019
	r_{p}			-0.056	0.184*	0.004	-0.099	-0.187*	-0.126	0.013	-0.041	0.058	0.044	-0.019	0.001
Plant height (cm)	r_{g}				-0.153*	0.565**	0.020	0.118	-0.088	0.240**	0.323**	-0.144	0.226**	-0.229**	0.135
	r_{p}				-0.039	0.153*	0.006	0.083	-0.070	0.213**	0.183*	-0.044	0.147*	-0.147*	0.105
No. of primary branches /plant	r_{g}					0.520**	-0.002	$-0.352 * *$	-0.317**	$0.212^{* *}$	0.304**	$-0.247 * *$	0.082	-0.24	-0.012
	r_{p}					0.134	-0.004	$-0.207 * *$	-0.185*	0.152*	0.128	-0.067	0.085	-0.172*	-0.016
No. of mature pods/plant	r_{g}						0.158*	-0.411**	-0.260**	0.031	0.511**	-0.299**	0.121	-0.107	0.047
	r_{p}						0.114	-0.225**	-0.102	0.054	0.252**	0.075	$0.221^{* *}$	-0.044	0.013
100-pod weight (g)	r_{g}							0.134	0.254**	0.121	0.101	0.187*	0.257**	0.286**	0.116
	r_{p}							0.134	0.219**	0.088	0.085	0.162*	0.231**	0.274**	0.109
100-kernel weight (g)	r_{g}								0.315**	0.146*	-0.153*	0.346**	0.234**	0.022	0.078
	r_{p}								0.278**	0.099	-0.136	0.271**	0.204**	0.025	0.065
Sound mature kernel (\%)	r_{g}									-0.042	-0.090 -0.090	$0.291 * *$ $0.215 * *$	0.166^{*} 0.134	$0.414 * *$ $0.370 * *$	0.002 0.021
	r_{p} r_{g} d									-0.040	-0.090	$0.215 * *$ $0.449 * *$	0.134	$0.370^{* *}$ $-0.315 * *$	0.021 $0.253 * *$
Shelling out-turn (\%)	r_{p}										-0.086	0.449 0.29	$0.551^{* *}$	-0.239**	0.184*
Biological yield/plant (g)	r_{g}											$-0.507 * *$	0.255**	-0.084	0.262**
	r_{p}											-0.469**	0.208**	-0.073	$0.221^{* *}$
Harvest index (\%)	r_{g}												$0.636 * *$ $0.685 * *$	0.165*	0.001 -0.008
	r_{p}												0.685**	0.117	${ }^{-0.008}$
Kernel yield /plant (g)	r_{g}													-0.062	0.283**
	r_{p}													-0.055	$0.224^{* *}$
Oil content (\%)	r_{g}														$-0.4141^{* *}$
	r_{p}														-0.393**

Table 2 Genotypic path coefficient analysis showing direct (diagonal and bold) and indirect effects of different characters on pod yield in Virginia groundnut

Characters	Days to 50\% flowering	Days to maturity	Plant height (cm)	No. of primary branches /plant	No. of mature pods/ plant	$100-\text { pod }$ weight (g)	100kernel weight (g)	Sound mature kernel (\%)	Shelling out-turn (\%)	Biological yield/plant (g)	Harvest index (\%)	Kernel yield /plant (g)	Oil content (\%)	Protein content (\%)	Pod yield/ plant
Days to 50\% flowering	-0.0428	-0.0134	0.0324	-0.0106	-0.0034	0.0009	0.0135	0.0037	0.0173	-0.0053	0.0053	0.0078	-0.0045	-0.0044	0.0001
Days to maturity	0.0271	0.0863	-0.0092	0.0275	-0.0003	-0.0113	-0.0250	-0.0158	-0.0019	-0.0028	0.0042	0.0046	-0.0046	0.0017	0.0719
Plant height (cm)	0.0382	0.0054	-0.0506	0.0078	-0.0286	-0.0010	-0.0060	0.0045	-0.0122	-0.0163	0.0073	-0.0115	0.0116	-0.0068	0.1436
No. of primary branches/plant	-0.0079	-0.0103	0.0049	-0.0322	-0.0167	0.0001	0.0113	0.0102	-0.0068	-0.0098	0.0080	-0.0026	0.0077	0.0004	0.0220
No. of mature pods/plant	0.0026	-0.0001	0.0180	0.0166	0.0318	0.0050	-0.0131	-0.0083	0.0010	0.0163	-0.0095	0.0039	-0.0034	0.0015	0.1327
100-pod weight(g)	-0.0002	-0.0011	0.0002	0.0000	0.0013	0.0082	0.0011	0.0021	0.0010	0.0008	0.0015	0.0021	0.0024	0.0010	0.2949**
100-kernel weight (g)	-0.0053	-0.0049	0.0020	-0.0060	-0.0070	0.0023	0.0170	0.0054	0.0025	-0.0026	0.0059	0.0040	0.0004	0.0013	0.2293**
Sound mature kernel (\%)	-0.0027	-0.0057	-0.0027	-0.0098	-0.0081	0.0079	0.0098	0.0309	-0.0013	-0.0028	0.0090	0.0052	0.0128	0.0001	0.2416**
Shelling out-turn (\%)	-0.0240	-0.0013	0.0143	0.0126	0.0019	0.0072	0.0087	-0.0025	0.0594	-0.0050	0.0267	0.0448	-0.0187	0.0150	0.3824**
Biological yield/plant (g)	0.1323	-0.0340	0.3428	0.3229	0.5427	0.1073	-0.1623	-0.0960	-0.0897	1.0605	-0.5379	0.2704	-0.0893	0.2784	0.3753**
Harvest index (\%)	-0.1484	0.0591	-0.1742	-0.2996	-0.3619	0.2262	0.4190	0.3531	0.5433	-0.6137	1.2099	0.7704	0.2006	0.0015	0.6047**
Kernel yield/plant (g)	0.0342	-0.0100	-0.0427	-0.0155	-0.0228	-0.0485	-0.0442	-0.0314	-0.1421	-0.0480	-0.1199	-0.1883	0.0117	-0.0534	0.9141**
Oil content (\%)	-0.0036	0.0018	0.0079	0.0082	0.0037	-0.0098	-0.0008	-0.0142	0.0108	0.0029	-0.0057	0.0021	-0.0343	0.0142	0.0904
Protein content (\%)	0.0005	0.0001	0.0006	-0.0001	0.0002	0.0005	0.0004	0.0000	0.0011	0.0012	0.0000	0.0013	-0.0019	0.0045	0.2549**

*, ** Significant at 5% and 1% levels, respectively
Residual effect, $\mathrm{R}=0.074$

