

Research Note Selection Indices in Indian Mustard [Brassica juncea (L.) Czern & Coss]

V.B. Rathod, D.R. Mehta*, H.V. Solanki and L.J. Raval

Department of Genetics and Plant Breeding, Junagadh Agril. University, Junagadh-362001, Gujarat Email: drmehta@jau.in

(Received: 18 Sep 2013; Accepted: 20 Dec 2013)

Abstract

The discriminant-function technique was used to construct selection indices in 50 genotypes of Indian mustard (*Brassica juncea*). Sixty-three selection indices involving seed yield per plant and its five components were constructed using discriminant function technique. In general, the more the number of characters included in a selection index, the better was its performance. The index based on six characters *viz.*, seed yield per plant, biological yield per plant, harvest index, number of primary branches per plant, number of secondary branches per plant and number of siliquae per plant which had a genetic advance and relative efficiency of 122.10g and 1847.80% followed by and index based on five characters seed yield per plant, biological yield per plant, number of primary branches per plant, number of secondary branches per plant and number of secondary branches per plant which possessed genetic gain and relative efficiency of 121.94g and 1845.33%, respectively. The use of both these indices is advocated for selecting high yielding genotypes of mustard.

Keyword: Mustard, selection indices, discriminant function,

In spite of great importance of rapeseed and mustard as oilseed crops, very limited research work has been done on the genetics of economic characters. As a result breeding work has been confined mainly to pureline selection or pedigree method of breeding. It is now well recognized that yield is a complex character and depends upon the action and interaction of a number of factors. It is felt that progress can be accelerated if simultaneous selection for most of the economic characters contributing to yield is considered. For this purpose, the utilization of an appropriate multiple selection criteria based on the selection indices would be more desirable. No wok on this problem has been undertaken on Indian mustard so far. An application of discriminat function developed by Fisher (1936) and first applied by Smith (1936) helps to identify important combination of yield components useful for selection by formulating suitable selection indices. Therefore, the object of the present study was to constuct and assesses the efficiency of selection indices in mustard.

A field trial was conducted using 50 diverse genotypes of mustard during *Rabi* 2011-12 in a randomized block design with three replications at Instructional Farm, College of Agriculture, Junagadh Agricultural University, Junagadh. Each entry was sown in a single row of 3.0 m length with a spacing of 60 x 10 cm. Observations were recorded on five plants selected at random for the seed yield per plant (X₁), biological yield per plant (X₂), harvest index (X₃), number of primary branches per plant (X₄), number of secondary branches per plant (X₅) and number of siliquae per plant (X₆). For constructing the selection indices, the characters with high and significant genetic correlation coefficients and sizable direct effects on seed yield were considered. The model suggested by Robinson *et al.* (1951) was used for the construction of selection indices and the development of required discriminant function. A total of 63 selection indices were constructed using six traits. The respective genetic advance through selection was also calculated as per the formula suggested by Robinson *et al.* (1951). The relative efficiency of different discriminant functions in relation to straight selection for seed yield were assessed and compared, assuming the efficiency of selection for seed yield per plant as 100%.

Selection indices for seed yield per plant and other characters were constructed and examined to identify their relative efficiency in the selection of superior genotypes. The results on selection indices, discriminant functions, expected genetic gain and relative efficiency are presented in Table 1. The results showed that the genetic advance and relative efficiency assessed for different indices were higher than straight selection when the selection was based on component characters which further increased considerably with the inclusion of two or more characters. The highest efficiency was noted when five characters $(X_1+X_2+X_3+X_4+X_5)$ or all the six characters were considered. Thus, selection indices are more reliable and realistic for selecting desirable genotypes since they are constructed by giving proper weightage on the characters associated with the seed yield per plant.

The maximum genetic advance (GA) and relative efficiency (RI) in single character discriminant function was 104.910 g and 1587.621 %, respectively for number of siliquae per plant which, however, genetic advance (GA), relative efficiency (RI) and relative efficiency per character increased up to 112.17 g, 1697.54 % and 848.77 %, respectively in two character combinations (X₂+X₆) and 117.76 g, 1782.13 % and 594.043 %, respectively in three characters combinations $(X_2+X_5+X_6)$. Thus, there was an increase in the genetic gain as well as on relative efficiency with an increase in the character combinations. In four character combinations $(X_1+X_2+X_5+X_6)$, the highest genetic advance, relative efficiency and relative efficiency per character were 120.98 g, 1830.84 % and 457.711 %, respectively. Whereas the maximum genetic advance, relative efficiency and relative efficiency per character in five characters combinations $(X_1+X_2+X_4+X_5+X_6)$ were 121.94 g, 1845.33 % and 369.07% respectively. Robinson et al. (1951) in corn recorded a progressive increase in efficiency of selection indices with inclusion of every additional character in the index formula. Hazel and Lush (1943) also stated that the superiority of selection based on index increased with an increase in the number of characters under selection. In mustard, Singh and Singh (1974), Yadav and Singh (1988), Kakroo et al. (1994), Khulbe and Pant (1999) and Hussain et al. (2003) were also reported that an increase in characters resulted in an increase in genetic gain and that the selection indices improved the efficiency than the straight selection for seed yield alone.

Further, it was observed that the straight selection for seed yield was not that much rewarding (GA=6.61 g, RI=100 %) as it was through its components like biological yield per plant (GA=7.50 g, RI=113.45 %), harvest index (GA=4.16 g, RI=62.95 %), number of primary branches per plant (GA=1.03 g, RI=15.56 %), number of secondary branches per plant (GA=5.44 g, RI=82.26 %), number of siliquae per plant (GA=104.91 g, RI=1587.62 %) and/or in their combinations. The maximum efficiency in selection for seed yield was exhibited by a discriminant function involving seed yield per plant, biological yield per plant, harvest index, number of primary branches per plant, number of secondary branches per plant and number of siliquae per plant $(X_1+X_2+X_3+X_4+X_5+X_6)$ which had a genetic advance, relative efficiency and relative efficiency per character of 122.10g, 1847.80 % and 307.97 %, respectively followed by an index of five characters $(X_1+X_2+X_4+X_5+X_6)$ with 121.94 g genetic advance, 1845.33 % relative efficiency and 369.07 % relative efficiency per character. High efficiency in selection based on seed yield per plant, number of siliquae per plant, number of primary branches and number of secondary branches or in combination of all these four characters has been reported by Singh and Singh (1974), Chatterjee and Bhattacharyya (1986) and Karkoo *et al.* (1994).

The present study showed consistent increase in the relative efficiency of the succeeding index with simultaneous inclusion of each character. However, in practice, the plant breeder might be interested in maximum gain with minimum number of characters. In such a case, selection index consisting of four traits viz., seed yield per plant, biological yield per plant, number of secondary branches per plant and number of siliquae per plant could be advantageously exploited in the mustard breeding programmes. The present study also revealed that the discriminant function method of making selections in plants appears to be the most useful than the straight selection for seed yield alone and hence, due weightage should be given to the important selection indices while making selection for yield advancement in mustard.

Referances

- Chatterjee, S.D. and Bhattacharyya, B. 1986. Selection index in Indian mustard. *Indian J. Agric. Sci.*, 56(3): 208-209.
- Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. *Ann. Eugen.* **7**:179.
- Hazel, L. N. and Lush, J. L. 1943. The efficiency of three methods of selection. J. Hered., 33: 393-399.
- Hussain, S.; Hazarika, G.N. and Barua, P.K. 2003. Selection indices in Indian rapeseed (*Brassica campestris*) and mustard (*B. juncea*). *Indian J. Hill Farming*, **16**(1/2): 92-96.
- Kakroo, S.K.; Jindla, L.N.; Satija, D.R. and Gupta, M.L. 1994. Selection indices in Indian mustard [*Brassica juncea* (L.) Coss]. Ann. Bio., 10(2): 223-227.
- Khulbe, R.K. and Pant, D.P. 1999. Selection indices in Indian mustard [*Brassica juncea* (L.) Czern & Coss]. *Crop Improve.*, **26**(1):109-111.
- Robinson, H. F.; Comstock, R. E. and Harvey, P. H. 1951. Genotypic and phenotypic correlations in corn and their implications in selection. *Agron. J.*, **43:** 282-287.
- Singh, K.P. and Singh, A.B. 1974. Selection index for yield in Indian mustard [*Brassica juncea* (L.) Czern & Coss.]. *Indian J. Agric. Sci.*, 44(3): 129-131.
- Smith, H. F. 1936. A discriminant function for plant selection. Ann. Eugen. 7:240-250.
- Yadav, A.K. and Singh, H. 1988. Selection Indices for Seed Yield in Indian Mustard (*Brassica Juncea* (L.) Czern & Coss), Based on Physiological Attributes. *Indian J. Genet.*, 48(1): 103-106.

Table 1.Selection	index,	discriminant	function,	expected	genetic	advance	in seed	yield	and	relative
offician ar fu	am tha	use of differen	t coloction	indiana of	maratan	1				

Sr.	efficiency from the use Selection index	Discriminant function	Expected genetic	Relative	Relative efficiency per
No.	Selection mask		advance	efficiency (%)	character (%)
1	X ₁ . Seed yield per plant	0.621X ₁	6.608	100.000	100.000
1 2	$X_{1:}$ Seed yield per plant $X_{2:}$ Biological yield per		6.608 7.497		
2		0.274 X ₂	7.497	113.453	113.453
2	plant	0.292 V	4.1.00	(2.054	(2.05)
3	$X_{3:}$ Harvest index	0.383 X ₃	4.160	62.954	62.954
4	$X_{4:}$ No. of primary	0.613 X ₄	1.028	15.557	15.557
	branches per plant				
5	X _{5:} No. of secondary	0.687 X ₅	5.436	82.264	82.264
	branches per plant				
6	$X_{6:}$ No. of siliquae per	0.697 X ₆	104.910	1587.621	1587.620
	plant				
7	$X_1 + X_2$	$1.623X_1 - 0.021X_2$	16.873	255.344	127.672
8	$X_1 + X_3$	$0.903X_1 + 0.269X_3$	11.654	176.366	88.183
9	$X_1 + X_4$	$0.621X_1 + 0.720X_4$	6.921	104.736	52.368
10	$X_1 + X_4$ $X_1 + X_5$	$0.609X_1 + 0.695X_5$	9.497	143.714	71.85
11	$X_1 + X_6$	$0.522X_1 + 0.700X_6$	107.168	1621.787	810.894
2	X_2+X_3	$0.402X_2 + 1.026X_3$	14.773	223.558	111.77
13	$X_2 + X_4$	$0.216X_2 + 3.365X_4$	9.512	143.944	71.972
14	$X_2 + X_5$	0.196X ₂ +1.438X ₅	14.364	217.378	108.68
15	$X_2 + X_6$	$0.002X_2 + 0.745X_6$	112.174	1697.544	848.772
16	$X_{3}^{2}+X_{4}^{0}$	$0.371X_3 + 0.235X_4$	3.987	60.340	30.17
17	$X_{3} + X_{4}$ $X_{3} + X_{5}$	$0.348X_3 + 0.589X_5$	5.718	86.536	43.268
			105.098		
18	X_3+X_6	$0.724X_3 + 0.699X_6$		1590.465	795.23
9	X_4+X	$0.926X_4 + 0.689X_5$	6.005	90.879	45.440
20	X_4+X	$3.401X_4 + 0.699X_6$	105.440	1595.643	797.82
21	$X_{5}+X$	$2.667X_5 + 0.672X_6$	109.168	1652.055	826.02
22	$X_1 + X_2 + X_3$	$3.056X_1 - 0.354X_2 - $	21.811	330.063	110.02
	1 2 5	0.607X ₃			
23	$X_1 + X_2 + X_4$	$1.703X_1 - 0.119X_2 +$	18.300	276.936	92.312
	241+242+244		10.500	270.750	72.512
	37 . 37 . 37	4.213X ₄	01.005	222 111	107.27
24	$X_1 + X_2 + X_5$	$1.607X_1 - 0.104X_2 +$	21.285	322.111	107.370
		$1.518X_5$			
25	$X_1 + X_2 + X_6$	$2.019X_1 - 0.409X_2 +$	115.381	1746.077	582.020
		$0.748X_{6}$			
26	$X_1 + X_3 + X_4$	$0.967X_1 + 0.208X_3 -$	11.791	178.440	59.480
		0.197X ₄	110,71	1701110	
27	$\mathbf{V} + \mathbf{V} + \mathbf{V}$	$0.197X_4$ $0.993X_1 + 0.172X_3 +$	13.148	198.976	66.32
27	$X_1 + X_3 + X_5$		13.140	196.970	00.32
•		0.479X ₅			T (D D D
28	$X_1 + X_3 + X_6$	$0.344X_1 + 0.955X_3 +$	107.712	1630.018	543.33
		$0.706 X_6$			
29	$X_1 + X_4 + X_5$	$0.594X_1 + 1.017X_4 +$	10.155	153.671	51.224
		0.732X ₅			
30	$X_1 + X_4 + X_6$	$0.478X_1 + 3.572X_4 +$	107.712	1630.023	543.34
,0	······································		107.712	1050.025	545.54
71	$\mathbf{V} + \mathbf{V} + \mathbf{V}$	$0.692X_6$	111 405	1607 100	ECO 07
31	$X_1 + X_5 + X_6$	$0.209X_1 + 2.764X_5 +$	111.485	1687.128	562.37
		$0.680 X_6$			
32	$X_2 + X_3 + X_4$	$0.357X_2 + 1.062X_3 +$	15.586	235.860	78.620
		$2.847X_4$			
33	X ₂ +X ₃ +X ₅	$0.348X_2 + 1.020X_3 +$	18.329	277.380	92.46
-	2 · 5	$1.223X_5$		_///200	2.10
24	$\mathbf{V} + \mathbf{V} + \mathbf{V}$	$0.163X_2 + 1.326X_3 +$	112 000	1710 140	570.05
34	$X_2 + X_3 + X_6$		113.008	1710.168	570.05
		0.736X ₆			
35	$X_2 + X_4 + X_5$	$0.139X_2 + 3.318X_4 +$	15.897	240.565	80.188
		$1.436X_5$			
36	$X_2 + X_4 + X_6$	$-0.105X_2 + 6.822X_4 +$	113.057	1710.908	570.303
-	2 7 0	$0.733X_6$			2.5000
37	$\mathbf{Y}_{+} + \mathbf{Y}_{-} + \mathbf{Y}_{-}$	$-0.299X_2 + 3.791X_5 +$	117.763	1782.129	594.043
ונ	$X_2 + X_5 + X_6$		117.705	1/02.129	394.043
20	37 . 37 . 37	0.726X ₆	< 2 00	00.070	
38	$X_3 + X_4 + X_5$	$0.348X_3 + 0.576X_4 +$	6.209	93.968	31.323
		$0.643X_5$			

Contd..

Sr.	Selection index	Discriminant function	Expected	Relative	Relative efficiency
No.			genetic	efficiency	per character (%)
			advance	(%)	
39	$X_3 + X_4 + X_6$	$0.779X_3 + 3.364X_4 + 0.690X_6$	105.608	1598.181	532.72
40	$X_3 + X_5 + X_6$	$0.815X_3 + 2.615X_5 + 0.675X_6$	109.212	1652.718	550.90
41	$X_4 + X_5 + X_6$	$2.159X_4 + 2.632X_5 + 0.668X_4$	109.654	1659.408	553.13
42	$X_1 + X_2 + X_3 + X_4$	$\frac{3.042X_1 - 0.399X_2 - 0.557X_3 +}{3.070X_4}$	22.516	340.740	85.18
43	$X_1 + X_2 + X_3 + X_5$	$\begin{array}{l} 2.569X_1 - 0.265X_2 - 0.273X_3 + \\ 1.268X_5 \end{array}$	24.759	374.681	93.67
44	$X_1 + X_2 + X_3 + X_6$	$\begin{array}{l} 2.519 X_1 - 0.438 X_2 + 0.066 X_3 + \\ 0.740 X_6 \end{array}$	116.067	1756.463	439.11
45	$X_1 + X_2 + X_4 + X_5$	$\frac{1.685X_1 - 0.198X_2 + 4.125X_4 + }{1.500X_5}$	22.690	343.371	85.84
46	$X_1 + X_2 + X_4 + X_6$	$\begin{array}{l} 2.182X_1 - 0.578X_2 + 7.902X_4 + \\ 0.735X_6 \end{array}$	116.396	1761.444	440.36
47	$X_1 + X_2 + X_5 + X_6$	$\begin{array}{l} 2.085X_1 - 0.736X_2 + 3.880X_5 + \\ 0.728X_6 \end{array}$	120.982	1830.844	457.71
48	$X_1 + X_3 + X_4 + X_5$	$\begin{array}{l} 1.021X_1 + 0.144X_3 + 0.193X_4 \\ + 0.504X_5 \end{array}$	13.408	202.912	50.72
49	$X_1 + X_3 + X_4 + X_6$	$\begin{array}{l} 0.162X_1 + 1.139X_3 + 4.074X_4 \\ + 0.700X_6 \end{array}$	108.265	1638.393	409.59
50	$X_1 + X_3 + X_5 + X_6$	$-0.415X_1 + 1.542X_3 + 2.988X_5 + 0.694X_6$	112.088	1696.250	424.06
51	$X_1 \! + \! X_4 \! + \! X_5 \! + \! X_6$	$0.182X_1 + 2.412X_4 + 2.764X_5 + 0.675X_6$	112.038	1695.496	423.87
52	$X_2 + X_3 + X_4 + X_5$	$0.301X_2 + 1.057X_3 + 2.894X_4 + 1.233X_5$	19.304	292.129	73.032
53	$X_2 + X_3 + X_4 + X_6$	$0.062X_2 + 1.429X_3 + 6.725X_4 + 0.725X_6$	113.851	1722.928	430.73
54	$X_2 + X_3 + X_5 + X_6$	$\begin{array}{l} -0.119 X_2 + 1.414 X_3 + 3.629 X_5 \\ + 0.719 X_6 \end{array}$	118.247	1789.457	447.30
55	$X_2 + X_4 + X_5 + X_6$	$-0.386X_2 + 5.904X_4 + 3.757X_5 + 0.716X_6$	118.610	1794.949	448.73
56	$X_3 + X_4 + X_5 + X_6$	$\begin{array}{l} 0.845X_3 + 2.195X_4 + 2.619X_5 \\ + 0.670X_6 \end{array}$	109.735	1660.633	415.1
57	$X_1 + X_2 + X_3 + X_4 + X_5$	$\begin{array}{l} 2.568X_1 - 0.313X_2 - 0.233X_3 + \\ 3.136X_4 + 1.233X_5 \end{array}$	25.516	386.140	77.22
58	$X_1 + X_2 + X_3 + X_4 + X_6$	$\begin{array}{l} 2.355X_1 - 0.493X_2 + 0.286X_3 + \\ 6.933X_4 + 0.728X_6 \end{array}$	116.931	1769.531	353.90
59	$X_1 + X_2 + X_3 + X_5 + X_6$	$\begin{array}{l} 13.037X_1 - 1.531X_2 - 8.100X_3 \\ - 21.683X_5 + 0.922X_6 \end{array}$	99.559	1506.641	301.32
60	$X_1 + X_2 + X_4 + X_5 + X_6$	$\begin{array}{l} 2.226X_1 - 0.879X_2 + 6.980X_4 + \\ 3.833X_5 + 0.717X_6 \end{array}$	121.940	1845.333	369.0
61	$X_1 + X_3 + X_4 + X_5 + X_6$	$\begin{array}{l} -0.560X_1 + 1.690X_3 + 3.558X_4 \\ + 2.960X_5 + 0.689X_6 \end{array}$	112.625	1704.377	340.87
62	$X_2 + X_3 + X_4 + X_5 + X_6$	$\begin{array}{l} -0.203X_2 + 1.502X_3 + 5.927X_4 \\ + \ 3.602X_5 + 0.709X_6 \end{array}$	119.071	1801.919	360.38
63	$X_1 + X_2 + X_3 + X_4 + X_5 + X_6$	$\begin{array}{l} 0.761X_1 - 0.282X_2 + 1.463X_3 + \\ 6.187X_4 + 3.632X_5 + 0.712X_6 \end{array}$	122.102	1847.797	307.90