

Research Article

Inheritance of double flower per peduncle and flower colour in chickpea (Cicer arietinum L.)

M. Tarikul Hasan, Anil Chandra Deb

Department of Genetic Engineering and Biotechnology. University of Rajshahi, Bangladesh. Email: htarikul@yahoo.com

(Received: 20 Sep 2013; Accepted: 23 Sep 2013)

Abstract

The double-flower per peduncle trait is known to contribute to increased seed yield in chickpea (Cicer arietinum L.). Reciprocal crosses have been done between white single-flowered kabuli type (BARI chola-8) and the pink doubleflowered deshi type (BARI chola-4). Results obtained in this investigation indicated that the single flowered trait in chickpea was completely dominant over double-flowered trait since all the population of F_1 are single flowered and in F_2 single and double flower segregate following 3:1 ratio which indicate Double-flowered trait controlling by a single loci recessive gene. In this experiment it was found that double flower per peduncle trait is highly heritable character in chickpea. In case of flower color pink color is complete dominant over white flower color and white flower color were governed by single recessive gene. Therefore, manipulation of these traits is easy.

Key word

Chickpea, flower color, number of flower per peduncle.

Introduction

Chickpea (Cicer arietinum L.) is a highly nutritious grain legume crop. It is an important source of energy, protein, mineral, fibers and other potentials health-beneficial phytochemical. It can play an important role in overcoming problems related to nutritional insecurity of the poor in developing counties like Bangladesh. Chickpea is an annual diploid (2n =16) species (Van der Maesen, 1972) with low out crossing due to cleistogamic flower (Toker et al., 2006). It is divided into two groups as "Macrosperma" or "Kabuli" and "Microsperma" or "Deshi" on the basis of plant characteristics. The Kabuli group has relatively larger seed size (100 seed mass >25g) (Singh and Diwakar, 1995) with creamy color, white flower and no pigmentation on the plant. In contrast, Desi group has different seed color, pink flower and show pigmentation on the plant. Most of the chickpea germplasm accessions produce a single flower at each flowering node, but some lines produce two, three or more flowers per axis and have the potential to form more than two pods per peduncle. Varieties having two flowers per peduncle were first described by Shaw and Khan (1931). As per Singh and Rheenen (1989, 1994) the double-flowered trait enhances seed vield under certain environment. Sheldrake et al. (1978) remove the second flower in doubleflowered genotypes and conclude that the doubleflowered character conferred the yield advantage of 6-11%. Among the released or cultivated chickpea germplasm in Bangladesh only one variety produce two flower per peduncle viz., BARI chola-4 (deshi). Kabuli type chickpea is nutritionally superior to deshi chickpea because of high biological value and utilizable protein. Yielding ability of kabuli chickpea could be possibly improved by introducing double-flower

trait from deshi chickpea. Keeping this view in mind this study was carried out to find the inheritance of double flower per peduncle in chickpea.

Material and methods

Two chickpea varieties viz., BARI chola-8 (kabuli) and BARI chola-4 (deshi) were considered in this investigation. Both direct and reciprocal crosses were made to obtain F₁ and subsequent generation. The parents viz., BARI chola-8 and BARI chola-4 are single flowered with white colour and double-flowered with pink colour per peduncle respectively. The crosses were made in the *rabi* season (2010-11). The F_1 and F_2 generations were grown during rabi seasons of 2011-12 and 2012-13 respectively. Normal crop management practice was followed. Plant was classifieds into single flowered per peduncle, double flowered per peduncle, pink color flower and white color flower types. Observations of data on number and color of flower per peduncle were recorded through visual observation on randomly selected plants from in F₁ generation and on individual plant basis in F₂ generation. Recorded data were analyzed with the help of chisquare (χ^2) .

Results and discussion

In the present investigation, it is observed that all the F_1 generations obtained from direct and reciprocal crosses between single flowered and double-flowered chickpea variety were single flowered. The results indicated that the single flowered trait in the chickpea were completely dominant over double-flowered trait. The result of the present study is in agreement with previous studies reported in chickpea by Kumar et al.

(2000) and Kumar *et al* (2003). In the F_2 generation these single flowered F₁s, produce both single and double flower per peduncle (Figure: 1). The data for the two types of flower number per peduncle fit well to the ratio of 3:1 (Table 1). The results indicated that the trait, double flower per peduncle was monogenic in nature and governed by single recessive gene. The value of probability "p" showed non-significant. Their heterogeneity also had good fit to the ratio 3:1. The same result was also reported by several researchers (Khan and Akhtar, 1934; Kumar et at., 2000; Gaur and Gour, 2002; Kumar et al., 2003). Recessive gene for double flower trait was designated as s by Khan and Akhtar (1934). Thus genotype of single flower and double flower are SS and ss respectively. According to Kumar et al. (2000) this s allele is variable for expression of double flower in certain environment which also supported by Rubio et.al (1998). Though most gene symbol in chickpea has triple alpha-code, D'Cruz and Tendulker (1970) used *sfl* for the allele double-flower trait. Singh and Chaturvedi (1998) report that allelic relationship between gene controlling double flowered and single flowered trait and Gaur and Gour (2002) suggested another gene symbol cym for the gene controlling the multi-flower trait. Following the nomenclature guidelines for Pisum gene symbol, Srinivasan et al. (2006) suggested sfl^d for the allele for the double trait. They also showed that two loci, Sfl (for one, two or three flower per peduncle) and Cym (more than three flower per peduncle) has control on number of flowers per peduncle in chickpea. Therefore, based on the above informations and the results of this study, it is proposed that the single flowered and double flowered genotypes are SflSfl and $sfl^d sfl^d$ respectively.

At the same time, investigated result indicated that mode of flower color segregation were also following same where pink color were complete dominant over white flower color and white flower color were governed by single recessive gene. Observed results are presented at Table 2. In the present investigation linkage between number of flower per peduncle and color of flower were not yet tested but as per Kumar *et al* (2003) there were no linkage between above two traits in chickpea. Though, the double flowered trait is not stable trait (Kumar *et al.* 2000) and the expressivity of this trait can be manipulated by changing the genetic background and the environmental conditions Srinivasan *et.al.* (2006).

The double flowered trait and also white flower colour are governed by single recessive gene each and segregates independently. Manipulation of these traits into high yielding variety as well as *kabuli* type variety is easy because of monogenic in nature. To take the advantage for realizing the possible potentiality of this trait further studies are Acknowledgement: Authors are grateful to the University Grand Commission (UGC) and Ministry of Education, Government of the People's Republic of Bangladesh for granting fellowship and deputation to carry out the research work and also grateful to Regional Agricultural Research Station of Bangladesh Agricultural Research Institute for Pulses at Iswerdi for supplying the experimental materials.

References

- D'Cruz, R and Tendulkar A V 1970 Genetic studies in Bengal gram (*Cicer arietinum* L.), I. Double pod x white flower gram. 11. *Res. J. Mahatma Phule Krishi Vidyapeeth*, 1 (2) : 121-127.
- Gaur, P. M. and Gour, V. K. 2002. A gene producing one to nine flowers per flowering node in chickpea. *Euphytica*, **128** : 231-235.
- Khan, A. R. and Akhtar, A. R. 1934. The inheritance of petal color in gram. Agric. and Livestock in India, 4: 127-155.
- Kumar, J., Srivastava, R. K. and Ganesh, M. 2000. Penetrance and expressivity of the gene for double podding in chickpea. *J. Hered.*, **91**(3): 234-236.
- Kumar, S., Singh, O. and Van Rheenen, H.A. 2003. Inheritance of double flowered peduncle and its linkage relationship with flower color in chickpea. J. Genet & Breed., 57: 207-211.
- Rubio, J., Moreno, M. T., Cubero, J. I. and Gil, J. 1998. Effect of the gene for double pod in chickpea on yield, yield components and stability of yield. *Plant Breed.*, **117**: 585-587.
- Shaw, R. J. F. and Khan, A. R. 1931. Varieties of Indian gram (*Cicer arietinum* L.), *Mem. Dept. Agric. Indian (Bot. Sec.)*, **19**: 27-47.
- Sheldrake, A. R., Saxena, N. P. and Krishnamurty, L. 1978. The expression and influence on yield of the double podded character in chickpeas (*Cicer arietinum* L.). *Field Crops Res.*, 1: 243-253.
- Singh, O and Rheenen, H. A. V. 1989. A possible role for the double-podded character in stabilizing the grain yield of chickpea. *Indian J. Pulses Res.*, **2**(2) : 97-101.
- Singh, O and Rheenen, H. A. V. 1994. Geentics and contribution of the multiseeded and double podded characters to grain yield of chickpea. *Indian J Pulses Res.*, **7**: 97-102.
- Singh, K. P. and Chaturvedi, S. K. 1998. Genetics of triple floweredness in chickpea. *Indian J. Pulses Res.*, 11: 15-17.
- Singh, F and Diwakar, B. 1995. Chickpea Botany and Production Practicees. *Skill Development Series no.16. ICRISAT Patuncheru India.* Pp-2.
- Srinivasan, S., Gaur, P.M.. Chaturvedi, S.K. and Rao, B.V. 2006. Allelic relationship of genes controlling number of flowers per axis in chickpea. *Euphytica*,**152** (3):331-337.

Electronic Journal of Plant Breeding, 4(3): 1228-1231 (Sep 2013) ISSN 0975-928X

- Toker, C., Conci, H. and Ceylan, F.O. 2006.Estimation of out crossing rate in Chickpea (*Cicer arietinum* L.) sown in autumn, *Euphytica*, **151**:201-205.
- Van der Maesen, L.J.G.S. 1972. Cicer L:, A monograph of the genus, with special reference to the Chickpea (*Cicer arietinum* L.), its ecology and cultivation. *Mededelingen Landbouwhogeschool* (*Communication Agricultural University*) Wageningen, the Netherlands, pp. 72-10.

Cross ♀ × ♂	Phenotype of F ₁	Obse I	erved frequer Phenotypic c	ncies in F ₂ lasses	Expected Genetic Ratio	χ^2	Р
		Single	Double	Total			
$V-4 \times V-8$	Single	127	29	156	3:1	3.42	0.0644
$V-8 \times V-4$	Single	193	48	241	3:1	3.32	0.0684
Heterog					0.09	0.7641	

Table 1. Goodness of fit χ^2 test for F₂ phenotypic classes single and double flower per peduncle in chickpea

Table 2. Goodness of fit χ^2 test for F_2 Phenotypic classes considering flower color in chickpea

Cross ♀ × ♂	Phenotype of F ₁	Observed frequencies in F ₂ Phenotypic classes				Expected Genetic	χ^2	Р
		Color	Single	Double	Total	Ratio		
$V-4 \times V-8$	Pink single	Pink	90	20	110	3:1	2.73	0.0984
		White	37	9	46	3:1	0.72	0.3961
$V-8 \times V-4$	Pink single	Pink	133	36	169	3:1	1.23	0.2674
		White	60	12	72	3:1	2.67	0.1022
Heterogeneity							0.70	0.8732

Figure 1. Number of flowers per peduncle and colour of flower in chickpea