Electronic Journal of Plant Breeding

Research Article

Study of morphological diversity of rice landraces (Oryza sativa.L)

R. S. Priyanga, D. Kumaresan, K. Amudha and S. Geetha
Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University,Coimbatore - 641 003, Tamil Nadu, India.
E-Mail: priyangars565@gmail.com

Abstract

An investigation was carried out to characterize 97 rice (Oryza sativa L.) land races for 24 different morphological traits using DUS (Distinctiveness, Uniformity, Stability) characters. A total of three characters viz., leaf auricles, leaf ligules and leaf shape of ligule were found to be monomorphic. The characters namely leaf anthocyanin colouration, leaf sheath anthocyanin colouration, panicle awns, panicle distribution of awns and leaf pubescence of blade surface were recorded as dimorphic. Seven traits viz., coleoptile colour, leaf intensity of green colour, ligule colour, leaf anthocyanin colouration of auricles, panicle exertion, leaf length of blade and leaf width of blade were of trimorphic. Five traits namely basal leaf sheath colour, culm attitude, flag leaf attitude of blade (early and late observation), panicle curvature of main axis were recorded four states of expression. The traits viz., spikelet colour of stigma, stem length, days to 50% flowering and time to maturity were showed five states of expression. The DUS characterization for these characters will be useful for rice breeders to restore the superior genes and use it in crop improvement programmes. Presence of uniform purple colour in whole plant incluing ligule and auricles was observed in purple puttu and chitansamba and can be used as morphological markers. The land races namely Ayyan samba and red sirumani were found to be the early maturity types. The short stem length and erect culms were observed in senthooram and seevansamba and these genotypes withstand lodging. Hence, these land races would be used as donors for the development of short duration and lodging resistance respectively in rice improvement programme.

Keywords

Rice, landraces, diversity, DUS characterization

INTRODUCTION

Rice is a major food crop for half of the world's population. The Oryza sativa, cultivated rice originated in South East Asia in humid tropical climate under the influence of local environment and farmers need, have evolved into 88,681 different variety, out of that 55,615 are landraces, 1,171 are wild races and 32,895 are other varieties (Sinha and Mishra, 2012). India is a primary centre of origin and diversity for rice according to N.I.Vavilov and is bestowed with tremendous variability both in terms of qualitative and quantitative traits and also for sources of resistance to different biotic and abiotic stresses. The farming groups have contributed significantly in the origin, evolution and accumulation of significant diversity in several landraces through selection process over a longer period of domestication (Pandravada et al, 2017). Although, an enormous diversity of rice germplasm is being conserved at International Rice Research Institute, Philippines
(1,27,916 accessions) and National Bureau of Plant Genetic Resources, New Delhi (1,01,112 accessions) (Shobha Rani et al, 2014). Some landraces are still cultivated locally by farmers but most of the landraces are rapidly replaced by high yielding varieties, which are the back bone of green revolution of rice (Sinha and Mishra, 2013). Hence, the characterization and assessment of genetic diversity is very important in rice breeding from the standpoint of selection and conservation of different landraces for further utilization in crop improvement programmes (Patra and Duha, 2003). The landraces are valuable as they possess a huge treasure of genetic material which may prove important in future variety development programmes. With this objective, the present study was carried out to characterize the available rice land races for the important morphological traits.

MATERIALS AND METHODS

A total of 97 rice landraces (Table 1) collected from Ramiah gene bank and Dept. of Rice were sown separately in a raised bed nursery in Department of Rice, Tamil Nadu Agricultural University Coimbatore during Kharif 2019. Thirty days old seedlings of each entry were planted in three rows of 2.4 m row length by adopting a spacing of $20 \mathrm{~cm} x$ 20 cm . The recommended packages of practices for rice were followed for the proper establishment and growth of the crop. Observations were recorded on five randomly tagged plants in each genotype in each replication for morphological characters viz., coleoptile colour, basal leaf sheath colour, leaf intensity of green colour, leaf anthocyanin colouration, leaf sheath anthocyanin colouration, leaf pubescence of blade surface, leaf anthocyanin colouration of auricles, leaf shape of ligule, colour of ligule, culm attitude, flag leaf attitude of blade (early and late observation), spikelet colour of stigma,
panicle curvature of main axis, distribution of awns in panicle, panicle exertion, stem length, leaf length of blade and leaf width of blade, days to 50% flowering and time to maturity whereas the presence of leaf auricles, leaf ligules and panicle awns were recorded manually by observing individual plants.

RESULTS AND DISCUSSION

The presence of morpho-genetic variation in agronomic characters of a crop would be of useful to choose the best method to improve the yield in rice. The qualitative characters which are less influenced by the environmental factors are used as morphological markers for the identification of rice land races (Rao et al., 2013; Kalyan et al., 2017). Frequency distribution (Table 2) for all the charaters under the study was calculated and the agro- morphological parameters for DUS characterization are given in Table 3. The characters viz., coleoptile colour,

Table 1. List of landraces used for DUS characterization.

S.No	Name of land races	S.No	Name of land races	S.No	Name of land races
1	Sornavari	34	Salem -3	67	Periya Sandigar
2	Periya samba	35	Chinthamani	68	Kattuyanam
3	Sarapilli samba	36	Varigarudan samba	69	Varakkal
4	Manaparai	37	Arasamba	70	Kaviya Samba
5	Manavari	38	Ariyan red	71	Thillainayagam
6	Arupatham kuruvai	39	Pamani samba	72	Norungan
7	Panamara samba	40	Jeeraga Samba	73	Kavuni
8	Vellai samba	41	Vaanginathan	74	Senkar
9	Thooyala	42	Salem	75	Murugankar
10	Arupatham samba	43	Vellai Chithiraikar	76	Kudaivazhai
11	Mattaikar	44	Ponkambi samba	77	Kuruvai Kalanjiyam
12	Kallurundai kar	45	Kaar	78	Palkachaka
13	Senthooram	46	Varigamban samba	79	Sorna kuruvai
14	Purple Puttu	47	Korangu samba	80	Thogai Samba
15	Chennangi	48	Uppu molagi	81	Malayalathan Samba
16	Vellaigundu samba	49	Chetty samba	82	Kattikar
17	Godumarai samba	50	Chittan samba	83	Kaatu ponni
18	Ayyan samba	51	Puluthi perattai kar	84	Kalarkar
19	Arupatham vellai	52	Karthigai samba	85	Rama kuruvaikar
20	Puthupatty samba	53	Alther samba	86	Aarkadu kichili
21	Mangam samba	54	Val samba	87	Matta kuruvai
22	Poongar	55	Sembili piriyan	88	Karuthakar
23	Shenmolagi	56	Senthi nayagam	89	Katta Samba
24	Sadai samba	57	Mapillai samba	90	Red Sirumani
25	Vellai kuruvai	58	White paddy	91	Ponmani Samba
26	Rangoon samba	59	Thattan samba	92	Kaliyan Samba
27	Nellore samba	60	Anai komban	93	Kalli madaiyan
28	Vadakkathi kar	61	Koolavalai	94	Karungan
29	Muthuvellai	62	Valasamudon	95	Mikuruvai
30	Sembalai	63	Gandhasala	96	Vellaikudai vazhai
31	Seevan samba	64	Manimenikki	97	Vadakkathi Samba
32	Moshanam	65	Salem -9		
33	Kappikar	66	Chinna Adukku Nell		

Table 2. Frequency distribution of rice land races for various morphological characters

S.No.	Characteristics		Note	Number of	Frequency
distribution (\%)					

Table 3. Characterization of rice landracds based on DUS guidelines

67	Periya Sandigar	3	2	3	9	9	1	9	1	9	3	1	3	1	5	1	7	0	0	3	48.2	1.24	102	132	177.2
68	Kattuyanam	1	2	3	9	9	1	9	1	9	3	1	5	5	1	5	3	0	0	5	44.0	1.10	108	138	147.9
69	Varakkal	1	3	7	1	1	1	9	1	9	3	1	3	3	5	3	3	0	0	7	38.6	1.08	93	123	162.24
70	Kaviya Samba	1	1	3	1	1	3	9	1	9	3	1	3	5	2	5	5	0	0	7	36.0	1.16	111	141	168.3
71	Thillainayagam	3	1	5	1	1	1	9	1	9	3	1	5	5	2	5	5	0	0	3	39.0	1.00	106	136	163.4
78	Norungan	3	3	7	1	1	1	9	1	9	3	1	3	1	4	1	5	0	0	5	48.6	0.96	110	140	143.18
73	Kavuni	3	4	3	9	9	1	9	3	9	3	3	3	5	4	5	5	0	0	5	34.2	1.12	115	145	156.4
74	Senkar	1	3	3	1	1	1	9	1	9	3	1	5	1	1	1	3	0	0	5	30.4	1.00	93	123	138.43
75	Murugankar	3	3	7	1	1	1	9	1	9	3	1	5	3	5	3	3	0	0	3	35.2	1.00	92	122	153.6
76	Kudaivazhai	3	1	5	1	1	1	9	1	9	3	1	5	1	5	1	3	0	0	3	27.6	1.00	93	123	171.4
77	Kuruvai Kalanjiyam	3	3	5	1	1	1	9	2	9	3	2	5	1	5	1	3	0	0	7	35.6	1.00	90	120	158.8
78	Palkachaka	1	1	7	1	1	1	9	1	9	3	1	3	1	1	1	3	0	0	3	40.4	1.26	101	131	
79	Sorna kuruvai	3	3	5	1	1	1	9	1	9	3	1	1	7	5	7	3	0	0	7	37.5	1.00	102	132	188.2
80	Thogai Samba	1	3	7	1	1	3	9	1	9	3	1	1	3	1	3	5	0	0	3	35.6	1.00	94	124	163.4
81	Malayalathan Samba	2	3	5	1	1	1	9	1	9	3	1	3	1	4	1	5	0	0	5	40.2	1.00	101	132	140.6
82	Kattikar	2	3	3	1	1	1	9	1	9	3	1	3	5	1	5	3	0	0	5	37.6	1.26	103	133	177.4
83	Kaatu ponni	3	1	7	1	1	1	9	1	9	3	1	5	1	5	1	5	0	0	3	36.6	1.00	94	124	182.8
84	Kalarkar	1	1	3	1	1	1	9	1	9	3	1	3	3	1	3	5	0	0	5	41.4	1.00	88	118	153.4
85	Rama kuruvaikar	3	3	7	1	9	1	9	1	9	3	1	5	3	5	3	5	0	0	3	31.0	1.00	74	104	152.0
86	Aarkadu kichili	3	2	5	1	1	1	9	1	9	3	1	5	3	5	3	3	0	0	3	50.0	0.98	101	131	106.2
87	Matta kuruvai	3	3	7	1	1	1	9	1	9	3	1	3	1	5	5	3	0	0	3	30.8	1.00	82	112	158.0
88	Karuthakar	1	3	7	1	9	1	9	1	9	3	1	5	3	1	3	3	0	0	5	35.4	1.08	79	109	171.2
89	Katta Samba	3	2	3	1	1	1	9	2	9	3	1	1	3	5	3	5	0	0	3	51.2	1.12	80	110	129.8
90	Red Sirumani	3	3	5	1	1	1	9	1	9	3	1	5	5	4	5	5	0	0	5	46.6	1.00	64	94	125.6
91	Ponmani Samba	3	3	7	1	1	1	9	1	9	3	1	1	3	5	3	5	0	0	7	29.0	1.00	90	120	177.6
92	Kaliyan Samba	1	3	7	1	1	1	9	1	9	3	1	5	3	5	3	3	0	0	7	41.8	1.00	108	138	175.9
93	Kalli madaiyan	3	3	7	1	1	1	9	1	9	3	1	5	3	5	3	5	0	0	3	45.6	1.08	82	112	127.52
94	Karungan	2	3	3	1	9	1	9	1	9	3	1	1	3	5	3	3	9	5	5	48.6	1.02	82	112	138.82
95	Mikuruvai	3	3	5	1	1	1	9	1	9	3	1	3	3	5	3	3	0	0	5	33.6	1.00	100	132	180.4
96	Vellaikudai vazhai	3	3	7	1	1	1	9	1	9	3	2	5	5	4	3	7	0	0	3	57.6	1.42	108	138	198.8
97	Vadakathi Samba	1	3	7	1	1	1	9	3	9	3	2	1	1	3	1	1	0	0	3	43.8	1.74	94	124	174.6

[^0]

Fig 1. Characterization of rice landraces based on DUS guidelines
basal leaf sheath colouration, leaf- colour of auricle, leafligule and leaf intensity of green colour, culm attitude, flag leaf attitude, panicle exsertion, panicle curvature, stem length, days to heading and time of maturity were represented in graphical form in Fig.1. Out of 97 landraces studied, 36.08 \% landraces recorded purple coloured coleoptile and 31.96 \% were colourless and 31.96% were green in colour. The basal leaf sheath colour was present in 56.79% of land races with green, 40.21% of landraces which are varied from light purple to purple with 8.25% light purples, 26.80% possessing purple lines and 5.16% landraces with uniform purple colour. With respect to the leaf intensity of green colour, 41.24% of
landraces exhibited light green colour, 30.93\% landraces observed medium intensity for green colour and 27.84% showed dark green colour. Lahkar and Tanti (2017) also reported similar results in landraces. Leaf anthocyanin colouration was present only in eight landraces, in which two landraces had shown purple colouration in whole plant (Purple puttu and Chittan samba) while six landraces had shown anthocyanin only on leaf blade. Similar result was reported earlier by Umarani et al. (2017). Regarding the leaf pubescence of blade surface, only 8.25% landraces were pubescent whereas remaining 91.75% were glabrous. Leaf auricles were present in all the landraces and kallurundaikar, purple puttu, vadakathisamba, chittan
samba and kavuni had uniform purple coloured auricles and 7.22% landraces exhibited light purple and it was akin with earlier reports of Sakthi Avinash et al. (2019). In case of leaf ligule, all the landraces recorded for its presence with split shape ligule. White coloured ligule occurred in most of the landraces and six landraces had light purple colour ligule and three landraces viz., purple puttu, chittan samba and salem had an uniform purple coloured ligule.

Pertaining to the spikelet colour of stigma, 49.48% of genotypes had white colour, 4.12% light green colour where as in the remaining genotypes, $9.28 \%, 14.43 \%$, 22.68% for yellow, light purple, and purple coloured stigma respectively. Similar report was also given earlier by Sakthi Avinash et al. (2019). Wide variation has been recorded among the genotypes for the trait, flag leaf attitude of blade in early observation, with 45.36% erect type; 38.14% semi erect type; 11.34\% horizontal type and 5.15% of landraces deflexed type. In late observation, 32.99\% erect type, 45.36% semi erect type, 16.49\% horizontal type and 5.15% drooping type while Kalyan et al. (2017) reported 85.71% as erect and 14.29% as semi erect. In case of panicle exertion, 32.99% were partially exerted, 38.14% mostly exerted and 28.87% well exerted type. Similar results were reported earlier by Sakthi Avinash et al. (2019). The genotypes namely vellaigundu samba, ariyan red, valsamba and karungan exhibited the presence of awns which are distributed in whole length of the panicle. Manjunatha et al. 2018) also reported the absence of awns in most of the genotypes taken for the study whereas Chakravorty and Ghosh (2012) reported panicle distribution of awns at tip only in most of the germplasm studied. For the character culm attitude, 30.93% landraces were erect type, 28.87% semi erect type, 37.11% open type, 3.09% were spreading type. Keerthivarman et al. (2019) reported that 51.35% landraces were of semi erect type, 32.43% were open type and 16.21% were erect type.

In case of stem length, 3.09% landraces were very short, 4.12\% short, 7.22% medium, 23.71% were long and 61.86% were very long type. Panamara samba (48.8 cm) recorded very short stem length followed by Thooyala $(52.4 \mathrm{~cm})$ and arupatham samba (52.6 cm) whereas the longest stem length was observed in karthigai samba $(212.5 \mathrm{~cm})$. The genotypes viz., senthooram (93.4 cm) and Seevnsamba $(110 \mathrm{~cm})$ recorded a short stem length with erect culm and these genotypes can be used as donor for lodging resistance in rice improvement programme. Similar reports were earlier reported by Kumaresan and Manonmani (2019). The trait leaf length of blade, 8.25\% land races were of short, 61.86% of medium and 29.90 \% of long leaf type. With respect to the leaf width of blade 11.34% were narrow, 87.63% were medium and 1.03% was broad leaf type. The time of heading (50% of flowering) was observed on plot basis in which two landraces viz., red sirumani (64 days) and ayyan samba (67 days) were found to be very early (<71days) and one landrace was very late type (>131days). In the remaining,
40.21\% were early (71-90 days), 53.61% were medium (91-110) and 3.09% were late (111-130days) duration types. Efendi et a.l (2015) also reported wide variation in heading from 63.2 to 108.2days. For the character time of maturity, two land races viz., red sirumani (94 days) and ayyan samba (97 days) were matured in <100 days, 40.21% landraces were early (101-120 days), 53.61% were medium (121-140 days), 3.09% were late (141-160 days) and one landrace vellaichithiraikar (171 days) was very late (>160 days) duration type. In the present study, it was concluded that the land races ayyan samba and red sirumani may be used as a donor for the development of short duration; senthooram and seevan samba for dwarf and lodging resistance in rice breeding programme. The genotypes purple puttu and chitan samba had uniform purple colour in whole plants are used as morphological marker in rice improvement programme.

REFERENCES

Chakravorty, A., and Ghosh, P. D. 2012. Characterization of Landraces of rice following DUS guidelines. Research in Plant Biology, 2(6). [Cross Ref]

Efendi, E. K., and Zakaria, S. Bakhtiar and Syafruddin, 2015. Morpho-Agronomic Performances of Rice (Oryza sativa L.) Landraces under Organic Cultivation of SRI Method. Int. J. Agric. Res., (In print, online first. http://www. scialert. net)

Kalyan, B., Radha Krishna, K. V., and Subba Rao, L. V. 2017. DUS characterization for germplasm of rice. International Journal of Current Microbiology and Applied Sciences.,6(10): 3480-3487. [Cross Ref]

Keerthivarman, K., Hepziba, S. J., Gnanamalar, R. P., and Ramalingam, J. 2019. Characterization of rice (Oryza sativa L.) landraces based on agromorphological traits. Electronic Journal of Plant Breeding, 10(2), 627-635. [Cross Ref]

Kumaresan, D and Manonmani, S. 2019. Assessment of genetic variability for qualitative and quantitative traits in local rice cultivars of Gudalur Valley of the Nilgiris. Ind. J. Pure App. Biosci., 7(5): 237-245. [Cross Ref]

Lahkar, L., and Tanti, B. 2017. Study of morphological diversity of traditional aromatic rice landraces (Oryza sativa L.) collected from Assam, India. Ann Plant Sci., 6(12): 1855-1861. [Cross Ref]

Manjunatha, G. A., Elsy, C. R., Rajendran, P., Joseph, J., Francies, R. M., and Krishnan, S. 2018. Agromorphological characterization of rice (Oryza sativa L.) landraces of Wayanad, Kerala. Journal of Pharmacognosy and Phytochemistry, 7(2): 14091414. [Cross Ref]

Pandravada, S.R., Senguttuvel, P., Hanamaratti, N.G. Surendra, P., Ibrahim, Mohammed, Sivaraj, N., Kamala, V., Sarath Babu, B. 2017. Gene-pool sampling and conservation of endemic specialty rice (Oryza sativa L.) Landraces and current status of their genetic erosion from diversity rich ecosystems of central and western karnataka. International Journal of Agriculture Sciences, 9 (52): 48804885.

Patra, B.C. and Dhua, S.R. 2003. Agro-morphological diversity scenario in upland rice germplasm of Jeypore tract. Genetic Resources and Crop Evolution 50: 825-828 2003. [Cross Ref]

Rao, L. V. S., Shiva Prasad, G., Chiranjivi, M., Chaitanya, U., and Surendhar, R. 2013. DUS characterization for farmer varieties of rice. IOSR J Agric Vet Sci, 4(5): 35-43. [Cross Ref]

Sakthi Avinash, N.P., Manonmani, K., Muthuvijayaragavan, R., Rajeswari, S., Manonmani, S., Raveendran M., Jeyaprakash, P. 2019. Morphological characterization of mutant lines of Nagina22 in rice (Oryza sativa L.). Electronic Journal of Plant Breeding 10(2):559-565. [Cross Ref]

Shobha Rani, N., Srikanth, S., Bhadana, V. P., Jyothi, B., Sundaram, R. M., Senguttuvel, P., Prasad, G.S.V., Trushar, S., Prasad, P.V.N.S., Hari Prasad, A.S., Subba Rao, L. V. 2014. Genetic diversity and genealogy of rice varieties of India. Hyderabad: Directorate of Rice research (ICAR), 368.

Sinha, A. K., and Mishra, P. K. 2012. Agronomic evaluation of landraces of rice (Oryza sativa) of Bankura district of West Bengal. Columban Journal of Life Science, 13(1and2): 35-38

Sinha, A. K., and Mishra, P. K. 2013. Morphology based multivariate analysis of phenotypic diversity of landraces of rice (Oryza sativa L.) of Bankura district of West Bengal. Journal of Crop and Weed, 9(2): 115-121.

Umarani, E., Radhika, K., Padma, V., and Rao, S. L. V. 2017. Agro-morphological characterization of rice (Oryza sativa L.) landraces based on DUS descriptors. International Journal of Pure Applied Bioscience., 5: 466-475. [Cross Ref]

[^0]: (A) Coleoptile, (B) Basal leaf: Sheath colour, (C). Leaf: intensity of green colour, (D) Leaf :Anthocyanin colouration,(E). Leaf sheath: anthocyanin colouration, (F) Leaf Pubescence of blade surface, (G) Leaf: auricles, (H) Leaf: anthocyanin colouration of auricles, (I) Leaf:ligule, (J) Leaf : shape of ligule, (K) Leaf : colour of ligule, (L) Culm: attitude, (M) Flag leaf : attitude of blade (early observation), (N) Spikelet: Colour of stigma, (O) Flag leaf: attitude of blade (late observation), (P) Panicle curvature of main axis, (Q) Panicle : awns, (R) Panicle : distribution of awns, (S) panicle: exertion, (T) Leaf: length of blade (U) Leaf: length of width, (V) Time of heading (50% of plants with panicle), (W) Time maturity, (X) Stem: length

