Electronic Journal of Plant Breeding

Research Article

Genetic divergence study for duration and biomass traits in sorghum [Sorghum bicolor (L.) Moench]

Ajay Prasanth¹, Ameena Premnath¹ and Raveendran Muthurajan^{1*}

¹Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. ***E-Mail:** raveendrantnau@gmail.com

Abstract

Germplasm can be exploited efficiently by determining its genetic diversity and identifying desirable parents for crop improvement programs. In this study, 200 diverse sets of sorghum accessions were evaluated during *rabi*, 2019 with an aim of assessing genetic diversity for fodder component traits using D² statistics. Fresh biomass contributed the highest (47.4%) towards divergence followed by days to flowering (35.9%) and plant height (16.7%). All the 200 genotypes were grouped into 6 clusters with Cluster I having the maximum number of genotypes (108) followed by cluster IV (47), VI (39) and clusters II, III, V having the least genotype number (2). Cluster I had the highest (10.61) intra cluster distance while cluster II had the least (0.41) intra cluster distance. Inter cluster distance between I and IV was observed the highest (10.43) while the least was observed between III and V. Genotypes from Cluster II and IV were observed to be the best suited for fodder improvement programs.

Key words

Sorghum, D² statistics, genetic diversity, clusters, fodder

INTRODUCTION

Sorghum (Sorghum bicolor (L.) Moench) is the fifth most important cereal crop worldwide after rice, wheat, maize and barley in terms of area and production (FAOSTAT, 2018). Globally sorghum is cultivated in about 105 countries with an area of 42.14 m.ha and production of around 54.34 m.t (Rakshit et al., 2014). Africa contributes to half of the global sorghum production (50.2%) followed by the Americas (32.4%) and Asia (13.4%) (FAOSTAT, 2018). It is rich in carbohydrates, protein, vitamins and minerals and serves as a main source of energy in Africa and South Asia (Duodu et al., 2003). It also serves as an important source of fodder and biofuel (Doggett, 1988). Sorghum fodder is considered a demand in developed countries (FAOSTAT. 2018) as 97 per cent of total sorghum use is mainly confined to livestock feed. Sorghum fodder is preferred more than other forage crops due to its drought tolerance, quick growth, high dry matter content, high yield and wider availability. Some fodder sorghum can produce stalks by regenerating after cutting, yielding higher biomass than other forage crops.

In addition to fodder purpose, the stalks from sorghum are used as an alternative for the production of syrups, jaggery, citric acids and modified starch (Reddy et al., 2005). Due to these multipurpose uses from fodder sorghum, several crop improvement programs were made to maximize biomass production as sorghum is still considered a choice of crop for the marginal environment (Patel et al., 2020). One of the best crop improvement program involves screening the diversity residing in a natural population for identifying the superior genotypes withstanding diverse conditions which can meet up with human needs. So the present study has attempted to understand the divergence for fodder component traits including plant height, days to flowering and fresh biomass in a population of 200 genotypes using Mahalanobis's D² statistics (Mahalanobis, 1936).

MATERIALS AND METHODS

A diverse collection of 200 sorghum accessions were assembled (Table 1) and raised during *rabi* 2019

https://doi.org/10.37992/2021.1201.004

EJPB

at Agricultural Research Station (ARS), Kovilpatti, TNAU (Latitude 9.17'N, Longitude 77.88'E). Complete Randomized Block Design (CRBD) was followed for assessing genetic diversity in three fodder related traits *viz.* days to flowering, plant height (cm) and fresh biomass (g) with three replications. Accessions were raised in 2 m rows with spacing of 45 x 10 cm and were maintained with the standard cultivation practices. The fodder traits were observed for five randomly selected plants from the replicates of each accession.

Genetic diversity in the collection was assessed by determining Mahalanobis (1936) D² statistics. Clustering of genotypes was performed by Tocher's method (Rao, 1952) using GENRES statistical package (GENRES, 1994).

Table 1	List o	f accessions	taken	for	the	study
---------	--------	--------------	-------	-----	-----	-------

			55	13 9301
S. No.	NBPGR	Experimental ID	54	IS 9373
1		TNALL Sor1	55	IS 9378
1	15 0997	TNAU_Sor2	56	IS 9442
2	15 7022	TNAU_SOIZ	57	IS 9444
3	15 7 129	TNAU Sor4	58	IS 9563
4	157175	TNAU Sorf	59	IS 9567
5	15 7 204	TNAU Sore	60	IS 9687
0	10 7 3 3 3	TNAU Sor7	61	IS 9700
0	13 7 3 30	TNAU Sor	62	IS 9721
0	15 7405	TNAU_SUIS	63	IS 9747
9	15 7459	TNAU_SOI9	64	IS 9770
10	15 7 649	TNAU Sor11	65	IS 9774
11	13 / 000	TNAU Sorta	66	IS 9789
12	15 7737	TNAU_SOFT2	67	IS 9794
13	15 7748	TNAU_SOF13	68	IS 9805
14	IS 7752	TNAU_Sor14	69	IS 9912
15	15 ////	TNAU_SOF15	70	IS 9922
10	15 7794	TNAU_SOFI6	71	IS 9968
17	IS 7877	TNAU_Sor17	72	IS 9972
18	15 / 88 /	TNAU_SOF18	73	IS 9991
19	IS 7935	TNAU_Sor19	74	IS 10293
20	15 7991	TNAU_SOF20	75	IS 10324
21	IS 8028	TNAU_Sor21	76	IS 10372
22	IS 8113	TNAU_Sor22	77	IS 10400
23	15 8569	TNAU_SOF23	78	IS 10572
24	IS 8609	TNAU_Sor24	79	IS 10608
25	IS 8613	TNAU_Sor25	80	IS 10612
26	IS 8616	TNAU_Sor26	81	IS 10634
27	IS 8621	TNAU_Sor27	82	IS 10715
28	IS 8622	TNAU_Sor28	83	IS 10720
29	IS 8688	TNAU_Sor29	84	IS 10803
30	IS 8714	INAU_Sor30	85	IS 10815
31	IS 8/1/	INAU_Sor31	86	IS 10827
32	IS 8723	INAU_Sor32	87	IS 10841
33	IS 8724	TNAU_Sor33	88	IS 10843
34	IS 8725	TNAU_Sor34	89	IS 10853
35	IS 8794	TNAU_Sor35	90	IS 10876
36	IS 8826	INAU_Sor36	91	IS 10877

37	IS 8853	TNAU_Sor37
38	IS 8900	TNAU_Sor38
39	IS 8942	TNAU_Sor39
40	IS 8946	TNAU_Sor40
41	IS 8962	TNAU_Sor41
42	IS 8968	TNAU_Sor42
43	IS 9094	TNAU_Sor43
44	IS 9108	TNAU_Sor44
45	IS 9151	TNAU_Sor45
46	IS 9185	TNAU_Sor46
47	IS 9200	TNAU_Sor47
48	IS 9203	TNAU_Sor48
49	IS 9262	TNAU_Sor49
50	IS 9295	TNAU_Sor50
51	IS 9325	TNAU_Sor51
52	IS 9348	TNAU_Sor52
53	IS 9361	TNAU_Sor53
54	IS 9373	TNAU_Sor54
55	IS 9378	TNAU_Sor55
56	IS 9442	TNAU_Sor56
57	IS 9444	TNAU Sor57
58	IS 9563	TNAU Sor58
59	IS 9567	TNAU Sor59
60	IS 9687	TNAU Sor60
61	IS 9700	TNAU Sor61
62	IS 9721	TNAU Sor62
63	IS 9747	TNAU Sor63
64	IS 9770	TNAU Sor64
65	IS 9774	TNAU Sor65
66	IS 9789	TNAU Sor66
67	IS 9794	TNAU Sor67
68	IS 9805	TNAU Sor68
69	IS 9912	TNAU Sor69
70	IS 9922	TNAU Sor70
71	IS 9968	TNAU Sor71
72	IS 9972	TNAU Sor72
73	IS 9991	TNAU Sor73
74	IS 10293	TNAU Sor74
75	IS 10324	TNAU Sor75
76	IS 10372	TNAU Sor76
77	IS 10400	TNAU Sor77
78	IS 10572	TNAU Sor78
79	IS 10608	TNAU Sor79
80	IS 10612	TNAU Sor80
81	IS 10634	TNAU Sor81
82	IS 10715	TNAU Sor82
83	IS 10720	TNALL Sor83
84	IS 10803	TNAU Sor84
85	IS 10815	TNALL Sor85
86	IS 10827	TNALL Sor86
87	IS 10841	TNALL Sor87
88	IS 10843	TNALL Sor88
89	IS 10853	TNALL Sor80
90	IS 10876	TNALL Soran
91	IS 10877	TNALL Sora1
	10 10077	111/0_00181

EJPB

92	IS 10889	TNAU_Sor92	146	IS 12295	TNAU_Sor146
93	IS 10892	TNAU_Sor93	147	IS 12299	TNAU_Sor147
94	IS 10893	TNAU_Sor94	148	IS 12311	TNAU_Sor148
95	IS 10894	TNAU_Sor95	149	IS 12317	TNAU_Sor149
96	IS 10921	TNAU_Sor96	150	IS 12330	TNAU_Sor150
97	IS 10960	TNAU_Sor97	151	IS 12336	TNAU_Sor151
98	IS 10968	TNAU_Sor98	152	IS 12452	TNAU_Sor152
99	IS 10978	TNAU_Sor99	153	IS 12569	TNAU_Sor153
100	IS 10994	TNAU_Sor100	154	IS 12571	TNAU_Sor154
101	IS 11060	TNAU_Sor101	155	IS 12626	TNAU_Sor155
102	IS 11087	TNAU_Sor102	156	IS 12645	TNAU_Sor156
103	IS 11091	TNAU_Sor103	157	IS 12666	TNAU_Sor157
104	IS 11193	TNAU_Sor104	158	IS 14276	TNAU_Sor158
105	IS 11217	TNAU_Sor105	159	IS 14316	TNAU_Sor159
106	IS 11348	TNAU_Sor106	160	IS 14318	TNAU_Sor160
107	IS 11356	TNAU_Sor107	161	IS 14333	TNAU_Sor161
108	IS 11413	TNAU_Sor108	162	IS 14461	TNAU_Sor162
109	IS 11491	TNAU_Sor109	163	IS 14531	TNAU_Sor163
110	IS 11501	TNAU Sor110	164	IS 14532	TNAU Sor164
111	IS 11508	TNAU Sor111	165	IS 14535	TNAU Sor165
112	IS 11521	TNAU Sor112	166	IS 14542	TNAU Sor166
113	IS 11527	TNAU Sor113	167	IS 14549	TNAU Sor167
114	IS 11543	TNAU Sor114	168	IS 14552	TNAU Sor168
115	IS 11548	TNAU Sor115	169	EC488361	TNAU Sor169
116	IS 11550	TNAU Sor116	170	IS 14775	TNAU Sor170
117	IS 11818	TNAU Sor117	171	IS 14798	TNAU Sor171
118	IS 11902	TNALL Sor118	172	IS 14813	TNAU Sor172
119	IS 11911	TNALL Sor119	173	IS 14816	TNALL Sor173
120	IS 11912	TNALL Sor120	176	IS 14817	TNALL Sor174
120	IS 11072	TNALL Sor121	175	IS 14819	TNALL Sor175
121	IS 11944	TNAU Sor122	176	IS 14820	TNALL Sor176
122	IS 11955	TNAU Sor123	170	IS 14826	TNALL Sor177
120	IS 11058	TNAU Sor124	178	IS 14842	TNALL Sor178
124	IS 11950	TNAU_Sor125	170	IS 14861	TNAU Sor170
120	IS 11902	TNAU_Sor126	179	19 14001	TNAU Sor180
120	IS 11907	TNAU_Sor127	100	13 14073	TNAU_SOITOU
120	13 11971		101	13 14929	TNAU_SOLIDI
120	15 11960	TNAU_SUI120	102	15 14952	TNAU_SUI 102
129	15 11900	TNAU_S01129	103	15 14941	TNAU_SUI103
130	15 12006	TNAU_S01130	104	15 14991	TNAU_S01104
131	15 12024	TNAU_SOF131	185	15 15005	TNAU_SOF185
132	15 12150	TNAU_Sor132	180	15 15033	TNAU_SOF186
133	15 12166	TNAU_Sor133	187	IS 15042	TNAU_Sor187
134	15 12175	TNAU_Sor134	188	15 15045	TNAU_Sor188
135	IS 12176	INAU_Sor135	189	IS 15061	INAU_Sor189
136	IS 12183	TNAU_Sor136	190	IS 15076	TNAU_Sor190
137	IS 12198	TNAU_Sor137	191	IS 15088	TNAU_Sor191
138	IS 12203	TNAU_Sor138	192	IS 15094	TNAU_Sor192
139	IS 12230	TNAU_Sor139	193	IS 15096	TNAU_Sor193
140	IS 12267	TNAU_Sor140	194	IS 15098	TNAU_Sor194
141	IS 12284	TNAU_Sor141	195	IS 15144	TNAU_Sor195
142	IS 12285	TNAU Sor142	196	IS 15144	TNAU_Sor196
	10 12200	—			
143	IS 12286	TNAU_Sor143	197	IS 15146	TNAU_Sor197
143 144	IS 12286 IS 12289	TNAU_Sor143 TNAU_Sor144	197 198	IS 15146 IS 15150	TNAU_Sor197 TNAU_Sor198

EJPB

200 IS 15122 TNAU_Sor200

RESULTS AND DISCUSSION

Sorghum has been considered a major important cereal in many developing countries due to its increasing animal feed value (fodder) and industrial (bio-ethanol) purposes over the years (Hariprasanna and Rakshit, 2016). In addition to fodder sorghum, farmers in India prefer dual purpose sorghum varieties as they tend to have fodder along with grains. Due to this increasing importance of fodder and dual purpose sorghum, this study was targeted to understand the genetic divergence of fodder contributing traits (plant height, days to flowering and fresh biomass) in 200 sorghum accessions using D² statistics and to identify the best genotypes for fodder improvement program by clustering.

 D^2 statistics resulted that the fresh biomass contributed the highest (47.4%) to divergence followed by days to flowering (35.9%) and plant height (16.7%) (**Table 2**).

Table 2. Contribution of fodder component traits to divergence in sorghum

Traits	Number of First Rank	% Contribution
Plant Height	3332	16.7
Days to Flowering	7138	35.9
Fresh Biomass	9430	47.4
Total	19900	100

This study implies the importance of fresh biomass trait for selecting superior fodder yielding genotypes.

D² statistics analysis in this present study further grouped the accessions into 6 clusters (**Table 3**) of which Cluster II, III and V had the minimum number of accessions (2); Cluster I had the maximum number of accessions (108) followed by Cluster IV with 47 accessions and Cluster VI with 39 accessions. Doijad *et al.* (2016) performed clustering among 61 genotypes for 16 characters and observed 15 clusters from which most of the accessions (47) were confined to a single cluster indicating a less divergence than this present study. Subramanian *et al.* (2019) clustered 31 sorghum landraces into six clusters using eight characters but the present study clustered 200 accessions into 6 clusters indicating the richness of

Table 3. Clustering of sorghum genotypes

Clusters	Number of genotypes	Accession list
Cluster I	108	TNAU_Sor # 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 141, 142
Cluster II	2	TNAU_Sor # 171, 172
Cluster III	2	TNAU_Sor # 161, 198
Cluster IV	47	TNAU_Sor # 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 143, 144, 145, 146, 147, 148 , 149, 150, 151, 152, 153, 154, 169
Cluster V	2	TNAU_Sor # 160, 183
Cluster VI	39	TNAU_Sor # 155, 156, 157, 158, 159, 162, 163, 164, 165, 166, 167, 168, 170, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 199, 200

population size and genetic divergence observed in this present study.

The present study observed the highest inter cluster D^2 value (108.73) and inter cluster distance (10.43) between Cluster I & IV; highest intra cluster D^2 value (112.67) and intra cluster distance (10.61) among Cluster I (**Table 4 & 5**). The least inter cluster D^2 value (2.83) and distances

(1.68) was observed between Cluster III & V; least intra cluster D^2 (0.17) and distance (0.41) was observed among Cluster II. Observing divergence between and among clusters is a good measure of selecting genotypes for breeding programs (Sinha and Kumaravadivel, 2016). The overall inter and intra cluster distance analysis from this present study indicates the superiority of accessions from

https://doi.org/10.37992/2021.1201.004

Cluster I as they showed high genetic distance among themselves and also between Cluster IV which indicates them as the best choice for hybridization programs. Several attempts were done to measure intra and inter clusters distances for selecting superior genotypes in the clusters (Gerrano *et al.*, 2014, Sinha and Kumaravadivel 2016, Ayush *et al.*, 2017, Subramanian *et al.*, 2019). Sinha and Kumaravadivel (2016) clustered 40 accessions into 6 clusters and observed the highest inter cluster distance of 5.148 which was lesser than the distance observed in

Table 4. Intra and inter Cluster D square values in the	study population
---	------------------

Clusters	I	II	III	IV	V	VI
I	112.67	91.86	68.11	108.73	65.18	100.79
II		0.17	8.48	81.31	13.54	95.34
Ш			0.38	62.18	2.83	66.58
IV				105.92	57.83	96.22
V					0.57	55.82
VI						80.05

Table 5. Intra and inter cluster distances in the study population

Clusters	I	II	III	IV	V	VI
I	10.61	9.59	8.25	10.43	8.07	10.04
II		0.41	2.91	9.02	3.68	9.76
III			0.62	7.89	1.68	8.16
IV				10.29	7.61	9.81
V					0.76	7.47
VI						8.95

this present study.

Cluster means for all traits were calculated in this present study (**Table 6**). Cluster VI had the highest cluster mean for plant height (250.65 cm), days to flowering (60 days) and fresh biomass (361.24 g). Cluster I had the least cluster mean for plant height (213.83 cm), Cluster II with the least cluster mean flowering (49 days) and Cluster III had the least cluster mean for fresh biomass (188.33 g). Typical fodder sorghum would maintain a height range above 200 cm (Kumar, 2016). Cluster mean

of Cluster II had the plant height (215 cm) exhibiting typical fodder sorghum and also had the least cluster mean for a short duration for flowering (49 days) which indicates the importance of using this cluster on sorghum fodder improvement program. For providing the best fodder sorghum, most breeders prefer selecting sorghum having a medium duration as they can provide a better fodder yield than short duration sorghums and can save time and money (Kumar, 2016). Cluster IV had the cluster mean with medium duration for flowering and high fresh biomass (g) which can be used for sorghum breeding

Table 6. Mean values for fodder component traits

Clusters	Plant height (cm)	Days to flowering	Fresh biomass (g)
I	213.83	58.31	290.00
П	215.67	49.33	224.17
III	217.00	53.67	188.33
IV	224.51	57.11	322.34
v	241.50	54.33	240.83
VI	250.65	59.65	361.24

programs.

The present study was performed to understand the divergence on fodder component traits within the assembled 200 sorghum accessions. Further analysis from this study identified superior genotypes for all observed

fodder component traits. TNAU_Sor155 was observed to be the tallest (423 cm) with late flowering (76 days) and TNAU_Sor79 to be shortest (54 cm); TNAU_Sor138 had the shortest duration (38 days); TNAU_Sor107 had the highest fresh biomass (1058 g) and TNAU_Sor158 with the least fresh biomass (68 g). These observations imply the importance of these superior genotypes for fodder improvement programs in sorghum.

ACKNOWLEDGEMENT

Authors are grateful to NBPGR, New Delhi for providing the study material.

REFERENCES

- Ayush, D., Ranwah, B.R., Pratishtha, D. and Prashant, B. 2017. Genetic divergence study in forage sorghum [Sorghum bicolor (L.) Moench]. Indian Journal of Ecology, 44(Special Issue 6): 834-837.
- Doggett, H. 1988. Sorghum. Harlow, Essex, England New York: Longman Scientific & Technical. *Wiley*, **18**: 512.
- Doijad, S.B., Bagade, A.B. and More, A.W. 2016. Evaluation of sorghum germplasm for genetic diversity using D2 statistics. *Electronic Journal of Plant Breeding*, 7(4): 934-938. [Cross Ref]
- Duodu, K.G., Taylor, J.R.N., Belton, P.S. and Hamaker, B.R. 2003. Factors affecting sorghum protein digestibility. *Journal of cereal science*, **38**(2): 117-131. [Cross Ref]
- FAOSTAT. 2018. Statistical database, Food and Agriculture Organization of the United Nations, Rome, Italy.
- GENRES. 1994. A statistical package for genetic researchers. Version 7.01, Pascal Institute Software Solution (PISS).
- Gerrano, A.S., Labuschagne, M.T., van Biljon, A. and Shargie, N.G. 2014. Genetic diversity assessment in sorghum accessions using qualitative morphological and amplified fragment length polymorphism markers. *Scientia Agricola*, **71**(5): 394-401. [Cross Ref]

Hariprasanna, K. and Rakshit, S. 2016. Economic importance

of sorghum. In *The sorghum genome* (pp. 1-25). Springer, Cham. [Cross Ref]

- Kumar, A.A. 2016. Botany, Taxonomy and Breeding. In: *The Sorghum Genome*, Springer, Cham, 27-45. [Cross Ref]
- Mahalanobis, P.C. 1936. On the generalized distance in statistics. National Institute of Science of India.
- Patel, B., Patel, A., Gami, B. and Patel, P. 2020. Energy balance, GHG emission and economy for cultivation of high biomass verities of bamboo, sorghum and pearl millet as energy crops at marginal ecologies of Gujarat state in India. *Renewable Energy*, **148**: 816-823. [Cross Ref]
- Rakshit, S., Hariprasanna, K., Gomashe, S., Ganapathy, K.N., Das, I.K., Ramana, O.V. and Patil, J.V. 2014. Changes in area, yield gains, and yield stability of sorghum in major sorghum-producing countries, 1970 to 2009. *Crop Science*, **54**(4): 1571-1584. [Cross Ref]
- Rao, C.R. 1952. Advanced statistical methods in biometric research. John Wiley & Sons, Inc., New York, N. Y. pp. 390.
- Reddy, B.V., Ramesh, S., Reddy, P.S., Ramaiah, B., Salimath, M. and Kachapur, R. 2005. Sweet sorghum-a potential alternate raw material for bio-ethanol and bio-energy. *International Sorghum and Millets Newsletter*, **46**: 79-86.
- Sinha, S. and Kumaravadivel, N. 2016. Understanding genetic diversity of sorghum using quantitative traits. *Scientifica*. [Cross Ref]
- Subramanian, A., Raj, R.N. and Elangovan, M. 2019. Genetic variability and multivariate analysis in sorghum (Sorghum bicolour) under sodic soil conditions. *Electronic Journal of Plant Breeding*, **10**(4): 1405-1414. [Cross Ref]