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Abstract
The Indian Barnyard millet (Echinochloa frumentacea), is a climate-resilient crop noted for its wide adaptability, short 
growth cycle, high nutritional value and stress tolerance. The present study was conducted to assess the salt tolerance 
level of the barnyard millet mutants. Twenty-five barnyard millet mutants along with check (MDU1 and CO(KV)2) 
were subjected to varying concentrations of sodium bicarbonate (NaHCO3) salt stress under controlled conditions. 
Germination percentage, root and shoot length, fresh and dry weight of seedlings were recorded, and stress tolerance 
indices were calculated. The analysis of variance revealed significant variation among mutants in response to salt 
stress. Highly tolerant mutants exhibited improved germination percentages and maintained favourable water relations 
under stress. The Relative Salt Injury Rate (RSIR) increased with higher salt levels, indicating increased sensitivity. 
Correlation analysis revealed a significant relationship between salt tolerance traits. Principal Component Analysis 
(PCA) helped to identify the main characteristics that caused variations among mutants. The significant contributors to 
this variation were Vigour Index (VI), Relative Growth Rate (RGR), Relative Water Content (RWC), and RSIR. Cluster 
analysis categorized mutants into four clusters, clearly distinguishing highly tolerant mutants from susceptible ones. 
Based on the findings promising salt-tolerant mutants, such as ACM21022, ACM21016, ACM21017, ACM21024, and 
ACM21014, were identified with the potential to contribute to future millet breeding programs. 

Keywords: NaHCO3, Salt tolerance, mutants, stress tolerance indices, correlation analysis, PCA, cluster analysis.

INTRODUCTION 
As the global population grows rapidly, the challenge 
of ensuring an adequate food supply is exacerbated by 
climate change and resource depletion. To meet the rising 
demand, food production must increase by around 70 
percent by 2050, necessitating innovative solutions (Food 
and Nations 2009){Food, 2009 #392}.The productivity of 
crop is hindered by various biotic and abiotic stresses. 
Soil salinity is a major threat to crop productivity, affecting 
20% of cultivated and 33% of irrigated lands worldwide 
(Flowers 2004, Munns and Tester 2008).Mandal et al., 

(2018) reported a rising trend in salt-affected areas, 
covering 1,128 million hectares globally, with South 
Asia alone experiencing impacts on 52 million hectares 
(Wicke et al., 2011). India faces nearly 5% salt-affected 
soils across diverse regions. Soil salinization reduces 
cultivable land, harms productivity, biodiversity, and water 
quality. Crop yields drop significantly in saline conditions, 
causing global economic losses of $27.3 billion annually 
(Qadir et al., 2014). India’s increasing salt-affected soil 
threatens food security and economic progress.
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Soil with high salt concentrations leads to water stress 
in plants by lowering osmotic potential, consequently 
affecting the overall soil water potential. On the other 
hand, sodicity negatively impacts crops by influencing soil 
physical and chemical properties(Letey 1985, Loveday 
and Bridge 1983).Sodic soils are characterized by having 
a high sodium (Na+) content, an Exchangeable Sodium 
Percentage (ESP) above 15, and a high alkalinity with a 
pH greater than 8.5. The elevated sodium concentration, 
in comparison to other cations, causes soil aggregates 
to disperse, resulting in poor soil structure. This leads to 
increased runoff due to low permeability and waterlogging 
during rainy seasons, as well as surface crusting and high 
soil strength during dry spells. These conditions further 
hinder crop growth and productivity. Fortunately, millets 
present a promising solution. These resilient grains can 
thrive in harsh climatic conditions, making them a valuable 
resource for addressing food shortages. Their ability to 
be cultivated in harsh climatic conditions makes them 
especially important for vulnerable populations facing 
food insecurity. In essence, millets have the potential to 
play a vital role in providing sufficient and healthy food in 
the face of global challenges. 

The Indian Barnyard millet, scientifically known as 
Echinochloa frumentacea (2n=36, 54), is a climate-
resilient and nutritionally valuable crop, showcasing 
its wide adaptability, short growth cycle, stress 
tolerance, and exceptional nutritional attributes  
(Renganathan et al., 2020, Saleh et al., 2013). It was 
one among the early millets to be domesticated in India. 
Notably, it thrives in the mid hills of the Himalayan region 
in Uttarakhand, while also being a popular millet choice 
in Tamil Nadu. Barnyard millet demonstrates remarkable 
adaptability, making it suitable for cultivation in challenging 
environments such as dry farming areas and coastal 
regions (Sood et al., 2015).

The present study has been designed to delve into the 
variability exhibited among barnyard millet M5 mutant 
lines concerning their tolerance to different level of salt 
concentrations.

MATERIALS AND METHODS 
A total of 25 barnyard millet mutants along with two checks 
MDU1 and CO(KV)2 were selected for present study. The 
base materials were procured from the Department of 
Plant Breeding and Genetics, Agricultural College and 
Research Institute, Tamil Nadu Agricultural University, 
Madurai. Karthikeyan (2022) conducted a mutation 
breeding programme in MDU1 barnyard millet using 
various dosages of Sodium azide and EMS. The best 25 
mutants were then chosen based on yield and associated 
features. The details of the mutants were are in Table1. 
Factorial Completely Randomized Design (Factorial CRD) 
was adopted for assessing the salt stress tolerance of the 
barnyard millet M5 mutant lines under invitro condition. The 
experimental factors encompassed the various mutants 
and concentrations of sodium bicarbonate (NaHCO3). 

The roll towel method was utilized for germination 
experiments. Twenty - five seeds of each mutant were 
placed in a roll towel at 0mM, 15mM, 30mM, 45mM, 
60mM and 75mM concentrations of NaHCO3. To ensure 
robustness, three independent replicates were maintained 
for each unique combination of treatments. The roll towel 
containing the seeds were then placed within a controlled 
seed germination chamber. Seeds were considered to be 
germinated when both plumule and radicle were emerged 
(more than 2 mm). Physio – morphological parameters 
namely germination percentage, root length, shoot 
length, fresh weight and dry weight of the seedlings were 
recorded on the 14th day after germination. Based on the 
above parameters stress tolerance indices like relative 
germination rate (RGR), shoot length stress tolerance 
index, root length stress tolerance index, vigour Index 
(VI), and relative salt injury rate (RSIR) were calculated 
by using the following formulae.

     (Li 2008)

 (Krishnamurthy et al., 2007)

(Krishnamurthy et al., 2007)

(Li 2008)

 
(Abdul‐Baki and Anderson 1973)

Statistical analysis: Utilizing R Studio software  
(Racine 2012), an analysis of variance (ANOVA) 
was carried out, employing the “agricolae” package 
(de Mendiburu and de Mendiburu 2019). To assess 
the correlation between traits, the ‘corrplot’ package  
(Wei et al., 2017) was employed. Principal Component 
Analysis (PCA) and Cluster analysis was performed using 
the ‘FactoMineR’ and ‘factoextra’ packages. 

RESULTS AND DISCUSSION
The impact of salt on the morphological characteristics of 
different barnyard millet mutants was assessed through 
analysis of variance (ANOVA) after subjecting them to 
varying concentrations of NaHCO3. The results revealed 
a highly significant difference in all observed traits for 
both treatments and mutants (Table 2). Moreover, 
interactions between mutants and treatment were also 
found to be significant, at a probability level of p<0.05. 
The mean square values attributed to salt treatment were 
highly significant across all examined traits at different 
concentrations.Arthi et al., (2019) performed the same 
study and inferred similar significant differences among 
the genotypes.These findings underscore the notable 
influence of salt stress on the morphological traits of 
the studied mutants and emphasize the significance 
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Table 1. List of experimental materials derived from induced mutagenesis of MDU1 Barnyard Millet

 Culture Name Dosage Mutagen
ACM21001 10mM EMS
ACM21002 10mM EMS
ACM21003 10mM EMS
ACM21004 10mM EMS
ACM21005 10mM EMS
ACM21006 10mM EMS
ACM21007 20mM EMS
ACM21008 20mM EMS
ACM21009 20mM EMS
ACM21010 20mM EMS
ACM21011 20mM EMS
ACM21012 20mM EMS
ACM21013 10mM SA
ACM21014 10mM SA
ACM21015 10mM SA
ACM21016 10mM SA
ACM21017 10mM SA
ACM21018 10mM SA
ACM21019 20mM SA
ACM21020 20mM SA
ACM21021 20mM SA
ACM21022 20mM SA
ACM21023 20mM SA
ACM21024 20mM SA
ACM21025 20mM SA

Table 2. Analysis of variance for morpho- physiological traits 

Traits Mutants Treatments Mutants:Treatments Residuals
GP 148** 3464** 47** 14
SL 6.97** 130.38** 1* 0.75
RL 6.7** 439.8** 1.7** 0.7
RGR 0.013** 3.426** 0.005** 0.002
RWC 369** 15653** 67** 0
RSL 0.0569** 1.0972** 0.0066** 0.0052
RRL 0.0368** 2.6627** 0.0074** 0.0032
RSIR 0.017** 3.307** 0.005** 0.001
VI 14625** 293387** 36663** 18291

**Significance at p <0.01; * Significance at p < 0.05. GP, germination percentage; SL, shoot length; RL, root length; RGR- Relative 
growth rate; RWC, Relative water content; RSL, Relative shoot length; RRL, Relative root length; RSIR, Relative Salt Injury Rate; VI, 
Vigour index

of mutant-specific responses to varying levels of salt 
treatment. Seed germination profoundly impacts on 
crop establishment in the plant life cycle (Hatfield and  
Prueger 2015). Salt stress induces reduction in 
germination rate, exhibiting mutant-specific variability. 

Among the barnyard millet mutants tested ACM21018, 
ACM21022 and ACM21024, exhibited improved 
germination percentages (>45%) even at highest NaHCO3 
stress (75Mm). Also, three mutants exhibited lower 
germination percentage (<20%) due to increased salt 
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concentration (Table 3), likely resulted from diminished 
osmotic potential, ion accumulation, and nutrient uptake 
(Afzali et al., 2011). These factors collectively disrupt the 
seeds’ physiological and biochemical functions, impeding 
aerobic respiration. RSIR increases with increased salt 
levels(Williams et al., 2019). Three mutants displayed a 
low RSIR (0.5) at 75mM, while others exhibited higher 
RSIR (0.6-1.0) (Table 3), signifying salt sensitivity 
(Sreenivasulu et al., 2000), attributed to membrane 
damage and reduced water uptake (Prasanthi  
Kumari et al., 2013). Morphological traits decline with 
increasing salt concentrations, affecting root and shoot 
growth (Table 3) due to salt’s disruption of cell division 
and differentiation (Tahjib-Ul-Arif et al., 2018).

Water loss within the plant contributes to a reduction 
in Relative Water Content (RWC), which serves as a 
dependable and widely used indicator for evaluating 
salt tolerance (Sánchez-Rodríguez et al., 2010). RWC 
demonstrates variations across mutants and salt levels 
(Table 3). Three mutants (ACM21017, ACM21022, 
ACM21024) maintain higher RWC (>60%) at 75mM, 

indicative of its tolerance nature. Conversely, six mutants 
exhibit lower RWC (<40%), indicating sensitivity and 
inefficient water uptake (Islam et al., 2011). Decreased 
RWC implies reduced turgor pressure and constrained 
cell expansion (Katerji et al., 1997). Tolerant plants 
sustain favourable water relations and RWC (Khanna-
Chopra and Selote 2007).

Vigour index decreased significantly with the increasing 
salt level as shown in the table 3. Reduction in vigour 
index of 99% was observed in 75 mM concentration. Salt 
stress affects the metabolisms in plants which ultimately 
lead to reduction in growth and productivity of plants 
(Shafi et al., 2009). Mutants ACM21022, ACM21016 and 
ACM21017 have highest vigour index of more than 500 
compared to other mutants.

Correlation: Association between salt tolerance related 
traits was estimated through simple correlation analysis. 
Two of the major salt tolerance traits, RGR and VI  
(r = 0.95**, p< 0.01) exhibited a highly significant and 
positive association among each other. These results  
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Figure 1. Seedling growth in different concentrations of NaHCO3 (0mM, 15mM, 30mM, 45mM, 60mM 
and 75mM) 
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were in accordance with Subramanian et al., (2020) for 
RGR and VI. Under salt stress, VI exhibited a highly 
significant and positive correlation with RWC (r = 0.80**, 
p< 0.01),while RGR also showed a significant correlation 
with RWC (r = 0.68**, p< 0.01) (Fig. 2). Similarly, SL also 
highly correlated with RWC (r = 0.77**, p< 0.01).RSIR 
showed significant negative correlation with all the traits 
recorded. RSIR exhibited high negative association with 
RGR (r = -0.95**, p< 0.01) and VI (r = -0.86**, p< 0.01). 
The present study revealed that the salt tolerance indices, 

 
 
Figure 2. Correlogram showing association between traits  associated with salt tolerance GP, 
germination percentage; SL, shoot length; RL, root length; RGR- Relative growth rate; RWC, Relative 
water content; RSL, Relative shoot length; RRL, Relative root length; RSIR, Relative Salt Injury Rate; 
VI, Vigour index 
 
 
 

 
 
 
Figure 3. Scree plot showing the degree of variation contributed by the two principal components 
towards overall variation. 
 
 
 

RGR and VI, showed high positive association with each 
other and with RWC indicating that the mutants with high 
RWC contributes positively towards salt tolerance. The 
study also shown that another key trait, RSIR has shown 
high negative correlation with important traits viz., RGR 
and VI. This has shown that the mutants with low RSIR 
values can perform better under high salt concentration 
(Rehman et al., 2000). Hence, the current study provides 
insights for the direct and indirect selection of contributing 
traits toward salt tolerance.
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Fig. 2. Correlogram showing association between traits  associated with salt tolerance GP, germination 
percentage; SL, shoot length; RL, root length; RGR- Relative growth rate; RWC, Relative water content; RSL, 

Relative shoot length; RRL, Relative root length; RSIR, Relative Salt Injury Rate; VI, Vigour index



EJPB

1153https://doi.org/10.37992/2023.1403.141

                                                   Vigneshwari et al.,

 
 
 
Figure 4. PCA analysis plotting variation on two principal components contributed by individual traits 
associated with Salt tolerance. 
 
 

 
 
 
 
Figure 5. Principal component analysis biplot plotting all the 25Mutants along with two checks based 
on the variation contributed towards two principal components. 

Fig. 4. PCA analysis plotting variation on two principal components contributed by individual traits 
associated with Salt tolerance

Principal component analysis (PCA): Principal component 
analysis measures the contribution of each component 
to total variance (Sinha and Mishra 2013). The first 
three principal components (PCs) with eigenvalues 
greater than 1 collectively explained 92.82% of the total 
variation. PC1, with an eigenvalue of 4.84, accounted 
for 53.82% of the variation, followed by PC2 (22.30%) 
and PC3 (16.69%) as in Table 4. A scree plot visualized 
the variance contributions of each principal component  

(Fig. 3). In PC1, traits VI, RGR, RSIR, and RWC exhibited 
high loadings of 0.94, 0.87, 0.76, and 0.75, respectively, 
indicating their substantial contribution to this component 
and thus to most of the total variation. In PC2, RRL 
and RSL had high contributions (0.52 and 0.36). PC3’s 
variation was primarily due to RSL (0.37) and RRL (0.36).
Plotting individual salt tolerant traits against PC1 and PC2 
revealed that VI and RGR were crucial contributors to 
overall variation, followed by RSIR, RWC, and SL.

Table 4. Principal components of traits associated with Salt tolerance

Parameters PC1 PC2 PC3
Eigen Value 4.84 2.01 1.5
Variance % 53.82 22.3 16.69
Cumulative % 53.82 76.13 92.82
GP% 0.88 0.04 0.08
SL(cm) 0.47 0.30 0.16
RL(cm) 0.00 0.64 0.24
RGR 0.87 0.04 0.08
RWC 0.75 0.01 0.12
RSL 0.18 0.36 0.37
RRL 0.00 0.52 0.36
RSIR 0.76 0.07 0.09
VI 0.94 0.03 0.00

PC, principal component; GP, germination percentage; SL, shoot length; RL, root length; RGR- Relative growth rate; RWC, Relative 
water content; RSL, Relative shoot length; RRL, Relative root length; RSIR, Relative Salt Injury Rate; VI, Vigour index. 
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Table 5. Cluster mean for morpho- physiological traits for salt tolerance

Traits Cluster I
(n= 5)

Cluster II
(n=5)

Cluster III
(n=12)

Cluster IV
(n=5)

GP% 20.53 30.09 34.66 41.93
SL (cm) 4.36 6.71 6.02 7.11
RL (cm) 5.77 4.23 5.75 5.45
RGR 0.21 0.30 0.35 0.42
RWC 28.63 45.87 49.17 61.80
RSL 0.44 0.69 0.61 0.62
RRL 0.47 0.33 0.47 0.44
RSIR 0.76 0.68 0.62 0.58
VI 202.04 328.27 406.27 528.49

Values in parenthesis represent the number of mutants present in each cluster. GP, germination percentage; SL, shoot length; RL, 
root length; RGR-Relative growth rate; RWC, Relative water content; RSL, Relative shoot length; RRL, Relative root length; RSIR, 
Relative Salt Injury Rate; VI, Vigour index.

A biplot analysis displayed the dispersion and diversity 
among variables (traits) and mutants(Fig. 5). Four discrete 
quadrants in the biplot separated tolerant mutants from 
others. Highly tolerant mutants were positioned in the third 
and fourth quadrants, aligned with key tolerance traits. 
Moderately tolerant mutants were clustered near the 
origin, some overlapping with tolerant ones. Moderately 
susceptible and susceptible mutants were located away 
from the origin, indicating their sensitivity.

The biplot analysis indicated that the key traits VI, RGR, 
GP, and RWC prominently influenced the performance 
of highly tolerant mutants under salt stress. Conversely, 
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Fig. 5. Principal component analysis biplot plotting all the 25Mutants along with two checks based on the 
variation contributed towards two principal components

RSIR negatively impacted susceptible and moderately 
susceptible mutants. Therefore, the PCA biplot effectively 
differentiated between tolerant and susceptible mutants 
and highlighted the traits contributing to variation under 
salt stress.Furthermore, in the current study, PCA analysis 
was effectively employed to identify the primary attributes 
that contribute to stress tolerance, in line with previous 
findings(Lapuimakuni S et al., 2018, Vaezi et al., 2020).

Cluster analysis: The hierarchical cluster analysis using 
Ward.D2 Euclidean distancescategorized the 25 mutants 
based on salt tolerance traits, resulting in four distinct 
clusters (Fig. 6). Cluster III (n=12) was found to be the 
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Figure 6. Hierarchical cluster analysis based on the morpho- physiological traits. Euclidean distance 
and Ward’s algorithm were used to evaluate the salt tolerance of 25 mutant lines along with the check. 
The red line indicates highly sensitive group; green line, sensitive group; purple line, moderately 
tolerant and blue line indicates tolerant group. 
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largest, while the remaining three clusters comprised 
five mutants each. Cluster IV included five highly 
tolerant mutants (ACM21022, ACM21016, ACM21017, 
ACM21024, ACM21014) with the highest mean values 
for salt tolerance traits: VI (528.49), RGR (0.42), RWC 
(61.80), and the lowest mean of RSIR (0.58). Cluster 
III housed twelve moderately tolerant mutants with the 
second-highest mean values for VI (406.27), RGR (0.35), 
RWC (49.17), and second lowest of RSIR (0.62). Cluster 
II consisted of five moderately susceptible mutants, 
with mean values for VI (328.27), RGR (0.30), RWC 
(45.87), and RSIR (0.68). Cluster I encompassed five 
susceptible mutants with the lowest mean values for salt 
tolerance traits: VI (202.04), RGR (0.21), RWC (28.63), 
and the highest RSIR (0.76). The range of mean values 
for each salt tolerance trait among tolerant (cluster IV) 
and susceptible clusters (Cluster I) were as follows: VI 
(202.04-528.49), RGR (0.21-0.42), RWC (28.63-61.80), 
RSIR (0.58-0.76).

The average inter-cluster distance was highest between 
Clusters I and IV (9.37), while it was lowest between 

Fig. 6. Hierarchical cluster analysis based on the morpho- physiological traits. Euclidean distance and 
Ward’s algorithm were used to evaluate the salt tolerance of 25 mutant lines along with the check. The red 
line indicates highly sensitive group; green line, sensitive group; purple line, moderately tolerant and blue 

line indicates tolerant group.

Table 6. Average Intra and Inter Cluster Distances of cluster groups
 

  1  2 3  4
1 5.31 6.69 7.36 9.37
2 4.25 5.84 6.39
3 3.85 5.47
4 2.89

Values in bold represents the intra cluster distance

Clusters I and II (6.69). The average intra-cluster distance 
was highest in cluster I (5.31) and it was lowest in Cluster 
IV (2.89) (Table 6). This indicated significantly higher 
variation among mutants in Clusters I (susceptible) and 
IV (highly tolerant), and comparatively lower variation 
between Clusters I (susceptible) and II (moderately 
susceptible). The intra-cluster distance confirms strong 
association among the five tolerant mutants in Cluster 
IV. This study revealed a distinct clustering pattern, 
effectively segregating tolerant and susceptible mutants. 
Mean values across clusters displayed significant trait 
variations. Cluster IV, containing highly tolerant mutants, 
exhibited the highest mean values for positively associated 
traits (VI, RGR, RWC), and the lowest for the negatively 
associated trait RSIR. These findings align with previous 
studies in wheat, rice, and barley genotypes under salt 
and drought stress (Ahmad et al., 2008, Singh et al., 
2015, Zeng 2005)

This study has identified highly salt-tolerant barnyard 
millet mutant lines namely ACM21022, ACM21016, 
ACM21017, ACM21024, and ACM21014.These mutants 
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demonstrated superior performance in terms of VI, RGR, 
RWC, and lower RSIR under salt stress condition. Their 
favourable position in the Principal Component Analysis 
(PCA) biplot further affirms their adaptability. Additionally, 
the cluster analysis grouped these promising mutants into 
a distinct cluster (Cluster IV), emphasizing their collective 
potential. These findings hold substantial implications 
for future breeding programs aimed at developing salt-
tolerant millet varieties in barnyard millet, which can play a 
pivotal role in addressing the challenges posed by climate 
change and global food security.
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