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Abstract 
The present study was carried out to assess the genetic parameters and divergence in 38 rice genotypes for important 
yield and grain quality traits. Phenotypic coefficient of variation (PCV) exceeded genotypic coefficient of variation 
(GCV) for all the traits taken for the study, while high heritability was recorded for all the traits, except kernel length to 
breadth ratio and grain iron content. The trait number of grains per panicle exhibited high heritability (91.00%) and high 
genetic advance as a percentage of mean suggesting simple selection may be followed to improve the traits. Cluster 
analysis grouped the genotypes into seven clusters. The highest inter-cluster distance was observed between clusters 
VII and IV (537.17). Five genotypes excelled in grain yield, ten genotypes for grain zinc content and one genotype for 
grain iron content over the check variety Rajendra Bhagwati. Despite high variability in grain zinc and iron content, no 
genotype surpassed the check variety for all three crucial attributes i.e. grain yield, grain zinc and iron content. The 
experimental material’s variability for grain nutrient status suggests their potential use in biofortification programs.
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Rice (Oryza sativa L.) stands as the principal staple 
crop globally with Asia holding a preeminent position in 
production, encompassing 90% of the worldwide rice 
acreage (Schneider and Asch, 2020).  India achieved the 
grain production of 112.43 MT with productivity of 2.7 t/
ha during the year 2019-20. Despite India’s notable rice 
production, its productivity lags behind that of major rice 
producing countries like China (6.5 t/ha) and Indonesia 
(5.2 t/ha) (MoA and FW, GoI, 2019-20). Though significant 

advancements have been made in rice production, there 
is a pressing need to enhance productivity further to 
address the escalating demands for food grains to feed 
the expanding global population. Concurrently, there is 
a burgeoning apprehension about ensuring nutritional 
security with respect to essential micronutrients, vitamins 
and proteins to prevent malnutrition. This concern arises 
due to the pervasive issue of micronutrient deficiency 
afflicting developing nations, exemplified by the situation 
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in India (Bain et al., 2013). A diet lacking essential minerals 
particularly iron (Fe) and zinc (Zn) contributes to hidden 
hunger or micronutrient malnutrition in developing nations 
(Welch and Graham, 2004). According to the World 
Health Organization (WHO) report 2022, the prevalence 
of anaemia among women aged 15 to 49 remained similar 
in 2019 as compared to 2000. However, due to population 
growth, the total number of affected women increased 
from 492.9 million in 2000 to 570.8 million in 2019. 
Developing rice varieties with high yield and sufficient 
micronutrient content could address the challenges of 
both food and nutritional security challenges. In light of 
this, the present study aimed to investigate variability, 
heritability, and genetic advances in yield and yield related 
traits as well as grain Zn and Fe content. Additionally, the 
research sought to identify genotypes with high grain 
yield and micronutrient (Zn & Fe) content among 38 rice 
genotypes, exploring their potential for utilization in future 
rice crop improvement program for enhancing both yield 
and micronutrient content.

Plant material and growth conditions: The current 
experiments was conducted at the Research Farm of 
RPCAU, Pusa, Bihar during Kharif 2021 season. The 
experimental material comprising 38 rice genotypes 
including the check Rajendra Bhagwati obtained from 
the Harvest Plus program, ICRISAT, Hyderabad were 
planted in a Randomized Complete Block Design with 
two replications, adhering to standard cultural practices 
for puddled transplanted rice. Each entry was evaluated 
in experimental plots measuring 5 m².    

Recording of observation: Data for 13 quantitative traits 
viz., plant height, number of panicles per plants, panicle 
length, flag leaf length, number of grains per panicle, grain 
yield per plant, days to 50% flowering, test weight, kernel 

length, kernel breadth, kernel length to breadth ratio were 
recorded by selecting five random plants from each plot 
following Standard Evaluation System, IRRI, while data 
on grain Iron  and  Zinc content was recorded through 
Energy Dispersive X-Ray Fluorescence (ED-XRF) on 
bulk sample in each replication (Chandu et al.,2020).  

Statistical Analysis: The mean data for each trait were 
subjected to analysis of variance following the method 
outlined by Panse and Sukhatme (1978). Genotypic 
(GCV) and Phenotypic (PCV) coefficients of variation 
were calculated as per Burton (1952). Broad sense 
heritability was determined according to Lush (1940) and 
genetic advance as a percentage of mean was computed 
following the procedure proposed by Johnson et al. 
(1955). Genetic Divergence among 30 genotypes was 
assessed using D2 analysis proposed by Mahalanobis 
(1936). The clustering of genotypes was performed 
utilizing the Euclidean method with Windostat version 9.2 
from Indostat services software.

The analysis of variance (ANOVA) presented in  
Table 1 indicated significant mean squares of treatment 
for all traits, implying noteworthy differences among 
genotypes and it  suggests the suitability of the 
experimental material for further genetic investigations. 
The ANOVA results gain significance due to the diverse 
nature of the experimental material comprising rice 
genotypes obtained from various rice research centres 
across the country characterized by distinct lineages and 
adaptation to diverse agro-ecological conditions. This 
finding aligns with  earlier reports in rice, where disparate 
genotypes exhibited significant variations (Das and 
Borthakur, 1974; Dhanwani et al., 2013; Nachimuthu et 
al., 2014; Abebe et al., 2017; Parihar et al., 2017). The 
observed variations underscore the genetic diversity 

Table 1. Analysis of variance (ANOVA) for 13 quantitative traits in rice evaluated during Kharif- 2021

Traits Mean Squares
Replication 

(df = 1)
Treatment 
(df = 37)

Error 
(df = 37)

Plant height (cm) 29.239 496.194** 47.258
Days to 50% flowering 21.053 234.721** 20.215
Number of panicles/ plant 1.914 6.630** 1.297
Panicle length (cm) 0.144 10.302** 1.657
Flag leaf length (cm) 3.513 52.156** 6.466
Number of grains/panicle 862.249 6139.212** 279.727
Test weight (g.) 3.522 25.465** 1.286
Kernel length (mm) 0.065 0.520** 0.116
Kernel breadth (mm) 0.038 0.065** 0.013
Kernel length to breadth ratio 0.029 0.225** 0.064
Grain Iron content (ppm) 0.064 3.455** 0.910
Grain Zinc content (ppm) 2.434 28.064** 1.964
Grain yield per plant (g.) 0.441 23.580** 2.398

**- Significant at α=0.01
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inherent in the experimental material, affirming its 
potential for comprehensive genetic exploration.

The analysis of coefficients of variation presented in 
Table 2 elucidates that the calculated values for genotypic 
coefficient of variation (GCV) and phenotypic coefficient 
of variation (PCV) exhibit minimal disparities among all 
the investigated traits, suggesting a limited influence of 
environmental factors on phenotype. Specifically, GCV 
and PCV values for kernel length (6.78 and 8.5%), kernel 
breadth (7.53 and 9.3%) and panicle length (8.1 and 
9.53%) were below 10%, aligning with earlier findings of 
Singh et al. (2020). Traits such as kernel length to breadth 
ratio (9.03 and 12.11%), days to 50% flowering (11.59 
and 12.63%), plant height (13.39 and 14.74%), flag leaf 
length (14.57 and 16.5%), grain iron content (12.84 and 
16.82%), test weight (16.03 and 16.86%), grain zinc 
content (15.89 and 17.05%), grain yield per plant (17.58 
and 19.47%) and number of panicles per plant (16.67 
and 20.32%) exhibited moderate GCV and PCV values 
ranging from 10 to 20%. Notably, similar observations 
regarding panicle length, test weight and days to 50% 
flowering have been documented by Khan et al. (2009), 
Raza et al. (2019), Kashinath et al. (2024).Conversely, 
number of grains per panicle displayed high GCV and 
PCV values (>20%), akin with the findings of Bekele et 
al. (2013). The minimal disparity between PCV and GCV 
across all traits in the present investigation suggests that 
the phenotypic variation observed was predominantly due 
to genetic factors rather than environmental influences.

The outcomes derived from the assessments of heritability 
and genetic advance as a percentage of the mean (GAM) 
presented in Table 2 reveal that traits such as plant 
height (83.00 and 25.08%), days to 50% flowering (84.00 
and 21.90%), number of panicles per plant (67.00 and 
28.17%), flag leaf length (78.00 and 26.49%), number of 
grains per panicle (91.00 and 46.93%), test weight (90.00 

and 31.40%), grain zinc content (87.00 and 30.53%), 
grain iron content (58.00 and 20.20%), and grain yield per 
plant (82.00 and 32.70%) exhibit high heritability (>60%) 
and substantial GAM. These findings suggest that these 
traits hold potential for direct selection to influence their 
modification in the desired direction, ultimately leading to 
an enhancement in grain yield (Agrawal, 2003; Girma et 
al., 2018 and Vallala et al., 2024). Conversely, other traits, 
including panicle length (72.00 and 14.19%), kernel length 
to breadth ratio (56 and 13.87%), kernel breadth (66.00 
and 12.57%) and kernel length (64.00 and 11.15%), 
demonstrate high heritability but low GAM. It may be 
attributed to the influence of environmental factors on trait 
expression. Consequently, simple selection strategies 
may not yield significant improvements in these traits 
(Mall et al., 2005; Khan et al., 2009; Brar et al., 2011; 
Kumar et al., 2020; Vanlalrinngama et al., 2023).

When the mean data of trait for all the genotypes were 
subjected to D2 analysis, it became apparent that the 
experimental materials exhibited significant diversity. 
Utilizing Euclidean methods, genotypes were organized 
into seven clusters as detailed in Table 3. The distribution 
of genotypes across clusters varied, with Cluster VII 
containing the highest number of genotypes (13) followed 
by Clusters I and VI (6 genotypes each), Cluster III (5 
genotypes) and Cluster IV with the lowest number of 
genotypes (2). Cluster means for all studied traits are 
furnished in Table 4. Cluster V demonstrated superior 
mean performance for the traits, number of panicles per 
plant, panicle length, test weight, kernel length and grain 
yield per plant. The Cluster VII exhibited optimal mean 
performance for traits such as kernel length to breadth 
ratio, grain Fe and Zn content, suggesting potential 
suitability of genotypes from this cluster as parent  for 
yield and grain Fe and Zn content improvement in rice. 
Table 5 provides insights into the intra cluster and inter 
cluster distances among all seven clusters derived from 

Table 2. Genetic parameters for 13 quantitative traits in rice evaluated during Kharif- 2021

Characters Mean Range Coefficient of variation (%) Heritability  
(%)

GA as % of 
MeanMin Max   Genotypic   Phenotypic

Plant height (cm) 111.87 84.5 146.57 13.39 14.74 83.00 25.08
Days to 50% flowering 89.37 72.00 120.00 11.59 12.63 84.00 21.90
Number of panicles per plant 9.80 6.67 12.92 16.67 20.32 67.00 28.17
Panicle length (cm) 25.67 21.17 29.17 8.10 9.53 72.00 14.19
Flag leaf length (cm) 32.82 22.50 41.59 14.57 16.50 78.00 26.49
Number of grains per panicle 227.00 134.50 370.00 23.85 24.96 91.00 46.93
Test weight (g.) 21.69 12.33 28.95 16.03 16.86 90.00 31.40
Kernel length (mm) 6.63 5.55 7.65 6.78 8.50 64.00 11.15
Kernel breadth (mm) 2.13 1.75 2.65 7.53 9.30 66.00 12.57
Kernel length to breadth ratio 3.14 2.56 3.96 9.03 12.11 56.00 13.87
Grain Iron content (ppm) 8.78 6.25 11.80 12.84 16.82 58.00 20.20
Grain Zinc content (ppm) 22.73 15.15 32.75 15.89 17.05 87.00 30.53
Grain yield per plant (g.) 18.52 11.68 26.97 17.58 19.47 82.00 32.70
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Table 3. Clustering pattern of 38 genotypes based on Euclidean distance of 13 quantitative traits in rice 
evaluated during Kharif- 2021

Cluster 
No.

No. of genotypes 
within cluster

Genotypes in cluster

I 6 R-RGY-IS-110, NVSR 522, DRR Dhan 45, CR 2819-1-5-3-2B-12-1, R-RGY-RH-16, JDP 2520-2-4-1

II 3 Samba Mahsuri, R-RH2-M1-93, R-RHZ-IR-140

III 5 R-RHZ-MB-119, R-RHP-IK-120, IR 64, BPT 3144, R-RHZ-IH-82

IV 3 MTU 1356, MTU 1357, BPT 3137

V 2 R-RHZ-SK-128, CR 2818-1-11-1-B-1-1-2-B-1

VI 6 CR Dhan 310, CGZR-2, CSR HZR 17-41, Rajendra Bhagwati, R-RGY-MH-113, DRR Dhan 48

VII 13 R-RHZ-IR-131, MI 156, R-RHZ-IR-142, CR Dhan 311, DRR Dhan 49, R-RHZ-IB-80, Zinco rice, 
R-RHZ-IR-132, CGZR-1, CSR HZR 17-8, CSR HZR 17-42, MI 127, R-RHZ-SM-14

Table 4. Cluster Mean of 13 quantitative traits in rice evaluated during Kharif- 2021

        Traits            
Cluster

PH  
(cm)

DFF NPP PL
(cm)

FLL
(cm)

NGP 1000-GW
(g.)

KL
(mm)

KB
(mm)

L/ B FeC
(ppm)

ZnC
(ppm)

YPP
(g.)

Cluster I 124.99 95.92 10.83 25.46 33.79 211.44 21.58 6.60 2.19 3.03 7.78 19.42 17.46

Cluster II 93.83 98.33 10.78 26.18 35.94 250.81 22.87 6.60 2.30 2.89 7.25 18.75 24.60

Cluster III 106.37 87.60 8.70 23.97 33.70 266.97 19.86 6.38 2.05 3.13 8.46 22.55 18.44

Cluster IV 103.57 109.83 9.33 26.67 32.31 327.78 15.68 5.78 2.07 2.81 8.73 19.47 17.39

Cluster V 99.00 93.50 12.21 28.58 33.84 267.58 28.80 7.17 2.18 3.30 8.13 22.18 26.60

Cluster VI 123.16 84.58 9.88 26.54 37.35 223.80 23.73 6.85 2.28 3.05 9.27 22.01 18.64

Cluster VII 110.77 81.81 9.22 25.22 29.17 185.29 21.52 6.77 2.03 3.35 9.61 26.42 16.59

PH- Plant height, DFF- Days to 50% flowering, NPP- Number of panicles per plant, PL- Panicle length, FLL- Flag leaf length, NGP- 
Number of grains per panicle, 1000GW- Test weight, KL- Kernel length, KB- Kernel breadth, L/B- Kernel length to breadth ratio, FeC- 
Grain iron content, ZnC- Grain zinc content, YPP- Yield per plant

Table 5. Inter- and Intra-Cluster distance (Euclidean²) of clusters formed by 38 genotypes evaluated during 
Kharif- 2021

 Clusters I II III IV V VI VII
I 59.54 136.35 121.70 216.13 264.41 116.89 264.09

II 87.26 155.75 190.45 197.24 205.40 399.91

III 88.00 197.62 223.74 127.50 202.16

IV 107.85 467.26 363.48 537.17

V 66.17 171.97 278.70

VI 66.14 155.18

VII 100.73

this investigation. The highest intra-cluster distance 
was observed within the Cluster IV (107.85) comprising 
three genotypes followed by Cluster VII (100.73) with 13 
genotypes, then Cluster III (88.00) with five genotypes 
and Cluster II (87.26) with three genotypes. Inter-cluster 
distances are further delineated in descending order, 
highlighting the maximum Euclidean² distance between 
Cluster IV and VII (537.17) followed by Cluster IV and 
V (467.26), Cluster II and VII (399.91), Cluster IV and 
VI (363.48), Cluster V and VII (264.41), Cluster II and 

IV (264.41), Cluster I and VII (264.09), Cluster III and V 
(223.74), Cluster I and IV (216.13), whereas the minimum 
distance recorded between Cluster I and VI (216.13). 
Crosses among the genotypes selected from these cluster 
pairs are expected to yield diverse segregants, enabling 
effective selection as the clustering pattern reflects 
genetic diversity. Utilizing parents from diverse clusters 
facilitates the accumulation of favourable alleles within a 
single genetic background. Similar findings in rice were 
reported earlier by Anjali et al. (2014), Rayala et al. (2016),  
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Ashok et al. (2017), Behera et al. (2018), Tripathy (2020) 
and Singh et al. (2020). In breeding for specific traits, 
parents should be selected from diverse clusters based 
on inter-cluster distance and appreciable differences in 
cluster mean values for the specified traits. Moreover, 
while selecting parents for trait improvement, the 
importance of yield should not be underestimated.

Based on  the mean value it was observed that five 
genotypes (R-RHZ-SK-128, CR 2818-1-11-1-B-1-1-
2-B-1, Samba Mahsuri, R-RH2-M1-93, and R-RHZ-
IR-140) excelled in yielding ability. In addition, the 
genotype (R-RGY-MH-113) was superior for grain iron 
content and 10 genotypes (R-RHZ-SM-14, Zinco rice, 
CGZR-1, R-RHZ-IR-132, CSR HZR 17-8, R-RHZ-
IH-82, CSR HZR 17-42, R-RHZ-IB-80, and DRR Dhan 
49) outperformed the check variety Rajendra Bhagwati 
for grain Zinc content (Table 6). However, no genotype 
exhibited superiority over the check variety for all crucial 
traits essential for food and nutritional security. 

In conclusion, the genotypes used in this experiment 
display considerable genetic divergence, indicating their 
strong potential for utilization in biofortification programs. 
This diversity could be instrumental in enhancing the 
nutritional quality of crops, thereby contributing to 
improved food security and public health.
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