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Abstract
Rice (Oryza sativa L.) stands as a important cereal sustaining over half of the world’s population. This study delves 
into the challenges confronting breeders in the realm of crop improvement, specifically focusing on the intricate 
task of designing an ideotype—a genotype amalgamating diverse attributes for optimal performance. Traditional 
methodologies, exemplified by the Smith–Hazel (SH) index, grapple with issues such as multicollinearity and the 
complexities of economic weighting decisions. In response to these challenges, the Multi-Trait Genotype–Ideotype 
Distance Index (MGIDI), conceptualized by Olivoto and Nardino (2021), emerges as a ground breaking approach. 
Principal Component Analysis (PCA) aids in the reduction of trait dimensionality, revealing four key factors that 
collectively contribute to 79.444% of total variability. The Scree plot guides factor selection, ensuring a targeted analysis. 
The MGIDI index computation yields a total genetic gain of 273.025%, with specific traits like spikelet fertility and 
seedling dry weight exhibiting significant gains. Six high-performing rice accessions—SM227, NLR33892, MTU3626, 
239(3), SMB3, and 405C3 were identified through MGIDI. These identified genotypes serve as valuable resources for 
developing recombinant populations, aligning with sustainable and effective crop improvement strategies. Additionally, 
these promising varieties exhibit strengths across various traits, offering potential for simultaneous trait improvement in 
future breeding programmes. The efficiency of MGIDI is highlighted through its innovative application in simultaneous 
trait selection, underscoring its significance across a wide range of crops.
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INTRODUCTION
Rice (Oryza sativa L.) is the second most important cereal 
crop after wheat and serves as a primary food source for 
over 50% of the global population. About 90 % of rice 
production and consumption is concentrated in Asia. and 
remaining 10% of rice cultivation is distributed worldwide. 
With the world’s population anticipated to reach 8 billion 
by 2025, there is a growing demand for increased rice 
production and cultivation area. Based on the current 
consumption pattern, about 35 to 40% increase in rice 

production is projected by 2025 to meet the needs of the 
expanding population.

Genetic gain is pivotal in plant breeding, shaping the 
trajectory of breeding programs. Relying solely on a few 
traits for selection is deemed inadequate, as it neglects 
potential gains in other crucial traits. Thus, breeders 
strive to amalgamate diverse desirable traits into a single 
genotype to enhance overall performance. So, in crop 
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improvement initiatives, breeders often aim to develop 
an ideotype, a genotype combining various attributes 
for optimal performance (Donald, 1968). The ideotype 
design’s objective is to enhance crop performance by 
simultaneously considering multiple attributes in genotype 
selection (Olivoto, and Nardino, 2021). Various selection 
indices have emerged for this purpose, yet the challenge 
lies in assigning realistic economic weightings to express 
the economic value of traits effectively. This hurdle often 
constrains breeders in identifying the optimal genotypes. 
The Smith–Hazel (SH) index, a linear selection index 
frequently utilized in multi-trait selection by breeders, relies 
on the phenotypic and genotypic covariance matrices. 
Additionally, a vector of economic weights is employed to 
determine the selection of index coefficients, maximizing 
the correlation between unknown genetic values and 
phenotypic values (Smith, 1936; Hazel, 1943).

However, the computation of the SH index involves 
inverting a phenotypic covariance matrix, as noted by 
Smith (1936). When traits are highly correlated leads to 
presence of multicollinearity, which commonly occurs when 
assessing multiple traits, can result in poorly conditioned 
matrices and biased index coefficients. This, in turn, 
affects the accuracy of genetic gain estimates (Graham, 
2003 and Olivoto et al., 2017). The challenge posed by 
multicollinearity is rooted in the suboptimal conditioning 
of the phenotypic covariance matrix.  Furthermore, if the 
matrix is not positive definite, the SH index may encounter 
an infinite number of solutions (Graham, 2003 and Olivoto 
et al., 2017). In addition to the multicollinearity challenge, 
breeders also grapple with determining realistic economic 
weightings for traits, a critical aspect of expressing their 
economic value (Bizari et al., 2017). This decision-making 
process further adds to the complexities faced by breeders 
in optimizing the SH index for effective crop improvement 
strategies.

In response to the challenges associated with the 
Smith–Hazel (SH) index, a pioneering approach has 
been introduced in the form of the multi-trait genotype–
ideotype distance index (MGIDI), as developed by Olivoto 
and Nardino (2021). This innovative multivariate selection 
index has been specifically designed to address the 
shortcomings of traditional indices, particularly the issues 
stemming from multicollinearity. Unlike conventional 
methods, the MGIDI considers the inherent correlation 
among traits and effectively selects all variables in the 
evaluation process. By doing so, it aims to overcome 
the limitations posed by poorly conditioned matrices 
and biased index coefficients encountered by the SH 
index while selecting superior genotypes. The emphasis 
on the genotype–ideotype distance in the MGIDI 
aligns with the ideotype breeding concept, facilitating 
a more comprehensive and effective approach to crop 
improvement. Olivoto and Nardino (2021) assert that 
the application of MGIDI results in significant genetic 
gain, marking a promising advancement in the field of 
multivariate selection indices by evaluating the strengths 

and weakness of the tested genotype.  This introduction 
sets the stage for a deeper exploration of the MGIDI and 
its potential to revolutionize breeding strategies in the face 
of complex trait interactions and economic considerations. 
The main objective of this work is to identify rice accessions 
with higher value for yield traits and early seedling vigour 
for future genetic improvement initiatives using multi-trait 
genotype ideotype distance index (MGIDI).

MATERIALS AND METHODS
Evaluation of Yield and Its Component traits under Field 
Conditions was conducted at wetland farm of S. V. 
Agricultural College, Tirupati, Andhra Pradesh (13° 37’ 
28.092’’ N, 79° 22’ 45.912’’ E), situated at an altitude of 
182.9 meters above sea level within the Southern Agro-
climatic Zone. The experiment was carried out during 
Kharif 2020-21 in a Randomized Complete Block (RCB) 
design with three replications. Forty-two rice genotypes 
were evaluated under field conditions (Table 1). 
Observations were recorded on yield and yield attributing 
traits namely, Days to 50% flowering, plant height, panicle 
length, number of panicles per plant, 1000-grain weight, 
number of filled grains per panicle, number of grains per 
panicle, spikelet fertility, and grain yield per plant.

Early seedling vigour related traits were evaluated under 
laboratory conditions in the Dept. of Genetics and Plant 
Breeding, Sri Venkateswara Agricultural College, Tirupati, 
Andhra Pradesh. Each genotype was assessed for 
ESV related traits by following Completely Randomized 
Design (CRD) using standard germination test (Paper 
towel method) as per International Seed Testing 
Association (ISTA, 2015). Seeds showing 2 mm of radicle 
length were considered as germinated. Germination 
per cent was determined as per ISTA rules for seed 
testing. Observations were  recorded on representative 
sample taken from randomly selected five plants in each 
replication for each entry on components related to early 
seedling vigor. encompassing first count of germination, 
final count of germination, germination index, germination 
rate, seedling fresh and dry weight, shoot length, root 
length, seedling height, root to shoot ratio, and two 
seedling vigor indices.

Statistical analysis for the Multi-Trait Genotype–Ideotype 
Distance Index (MGIDI) utilized the R Package ‘metan’ 
version 1.18.0, developed by Olivoto and Lúcio in 2020 
(https://github.com/TiagoOlivoto/metan). The analysis 
was carried out in R version 4.3.1 where construction of 
the MGIDI index involves four main steps which are as 
follows

Rescaling Traits (Normalization)

• Adjust each trait’s scale so that they all range from 
0 to 100.

• This ensures a uniform comparison and interpretation 
of trait values.
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Table 1. The designation and parentage of 42 rice genotypes utilized in the current investigation

S. No. Designation Parentage

1 54-3 BPT5204 x NLR33892

2 150-3 BPT5204 x NLR33892

3 187-1 BPT5204 x NLR33892

4 187-3 BPT5204 x NLR33892

5 239-3 BPT5204 x NLR33892

6 419-1 BPT5204 x NLR33892

7 419-3 BPT5204 x NLR33892

8 538-3 BPT5204 x NLR33892

9 BPT5204 (GEB24 x TN1) x MAHSURI

10 NLR33892 NLR 27999 x MTU 4870

11 NDP3 NLR34449 x IR64 Drt1

12 ND13 NLR34449 x IR64 Drt1

13 ND42 NLR34449 x IR64 Drt1

14 ND44 NLR34449 x IR64 Drt1

15 ND60 NLR34449 x IR64 Drt1

16 NLR34449 IR 72 x BPT5204

17 MDP2 MTU1010 x IR64 Drt1

18 MDP3 MTU1010 x IR64 Drt1

19 MDP4 MTU1010 x IR64 Drt1

20 MD4 MTU1010 x IR64 Drt1

21 MD5 MTU1010 x IR64 Drt1

22 MDP6 MTU1010 x IR64 Drt1

23 MTU1010 KRISHNAVENI x IR 64

24 28C1 N22 x IR64

25 46C2 N22 x IR64

26 76C2 N22 x IR64

27 81C N22 x IR64

28 130C N22 x IR64

29 153C1 N22 x IR64

30 221C3 N22 x IR64

31 273C2 N22 x IR64

32 405C3 N22 x IR64

33 425C3 N22 x IR64

34 457C2 N22 x IR64

35 476C3 N22 x IR64

36 488C N22 x IR64

37 NAGINA 22 LANDRACE

38 IR64 IR5657-33-2-1 x IR2061-465-1-5-5

39 SM227 SWARNA MUTANT

40 MTU3626 IR B x MTU 3

41 MTU1121 BPT5204 x MTU BB 8-24-1

42 SMB3 SWARNA MUTANT
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Let Xij be a two-way table with i rows/ genotypes/ 
treatments and j columns/traits. The rescaled value for 
the ith row and jth column (rXij) is given by: 
              

Where,     
   ηnj and  φnj are the new maximum and minimum values 
for the trait j after rescaling, respectively; ηoj and φoj  are 
the original maximum and minimum values for the trait 
j.   θij is the original value for the jth trait of the ith genotype. 

For traits in which negative gains are desired: ηnj =0 and 
φnj =100 is considered

For traits in which positive gains are desired: ηnj =100 and  
φnj =0 is considered

Factor Analysis: In the computation of the Multi-Trait 
Genotype–Ideotype Distance Index (MGIDI), a factor 
analysis approach was employed, akin to the FAI-BLUP 
index methodology proposed by Rocha et al. (2018). This 
analytical technique addressed the inherent correlation 
structure among traits, providing a means to reduce 
the dimensionality of the original trait set and elucidate 
relationships within latent variables. The application 
of factor analysis facilitated a simplified interpretation 
for practitioners, as the orthogonal axes among final 
factors mitigated issues of multicollinearity in genotype 
or treatment scores. This will helps to identify underlying 
factors that contribute to observed correlations, simplifying 
the complexity of the data.

                       

Where, X is a p × 1 vector of rescaled observations; μ is a 
p × 1 vector of standardized means; L is a p × f matrix of 
factorial loadings; f is a p × 1 vector of common factors;  
εis a p × 1 vector of residuals, being p and f, the number 
of traits and common factors retained, respectively. The 
eigenvalues and eigenvectors are obtained from the 
correlation matrix of rXij. The initial loadings are obtained 
considering the screeplot values. 

Then final loadings are obtained after varimax rotation 
(Kaiser, 1958). The scores obtained as follows:

                   F = Z(ATR-1)T

Where, F is a g × f matrix with the factorial scores; Z is a g 
× p matrix with the standardized means; A is a p × f matrix 
of canonical loadings, and R is p × p correlation matrix 
between traits. g, f and p are genotypes, factors retained 
and traits analysed respectively. 

Ideotype planning
• Define an ideotype by specifying target values for 

traits based on known or desired characteristics.

• This step involves determining the ideal 
combination of trait values for a genotype. 

Computing Genotype Distance to Ideotype
• Calculate the distance between each genotype and 

the planned ideotype.
• This distance measurement quantifies how closely a 

genotype aligns with the desired trait values set in 
the ideotype.

                             
                       
    

Where, MGIDIi is the distance index for the ith genotype;  
γij Score of the ith genotype in the jth factor (where i = 1, 
2, 3, … g; j = 1, 2, …,f). γj is the jth score of the ideotype. 

Proportion of the MGIDI index of the ith genotype explained 
by the jth factor (ധij) is used to shoe the strength and 
weakness of genotypes.
                                   
                               
          

Where, Dij is the distance between the ith genotype and 
the ideotype for the jth factor. Low contributions of a factor 
indicate that the traits within such a factor are close to the 
ideotype.

RESULTS AND DISCUSSION 
The likelihood ratio tests conducted on the analyzed traits, 
using the BLUP method with random effects of genotype 
and fixed effects of replication, revealed substantial 
genotype effects across multiple variables. Notably, plant 
height (PH), panicle length (PL), number of panicles per 
plant (NPP), thousand-grain weight (TGW), number of 
filled grains per panicle (TFG), Number grains per panicle 
(TGP), spikelet fertility (SF), first count of germination 
(FIRC), final count of germination (FINC), root to shoot 
ratio (RS), and both Seedling Vigour Index I and II 
(SVI I and SVI II) exhibited significant genotype effects  
(Fig. 1). These findings underscore the importance of 
genetic factors in influencing the observed variation in 
these traits. In the context of the Multi-Trait Genotype–
Ideotype Distance Index (MGIDI), these significant 
genotype effects are crucial as they contribute to the 
genetic diversity that the MGIDI aims to capture. 

Multicollinearity, characterized by high correlations among 
independent variables, presents a substantial challenge 
in Multivariate Analysis of Variance (MANOVA) models 
(Hair et al., 1998). In our study, a Condition Number 
Analysis using the kappa statistic on the MANOVA model 
revealed a condition number of 71.8466, indicating 
potential multicollinearity issues (Kutner et al., 2005). This 
elevated condition number underscores the necessity 
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Fig. 1. Boxplot analysis of variability for 21 traits of 42 rice genotypes. 

 Fig. 1. Boxplot analysis of variability for 21 traits of 42 rice genotypes
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for addressing multicollinearity to ensure the stability of 
parameter estimates in the MANOVA model. To mitigate 
this concern, we explored strategic approaches such as 
examining variable correlations through the correlation 
matrix, applying Factor Analysis to reduce dimensionality 
(Costello and Osborne, 2005), and considering MGIDI as 
an alternative method (Olivoto and Lúcio, 2020). 

The correlation matrix reveals significant relationships 
among the variables in the study. Number of filled grains 
per panicle and number of grains per panicle exhibited 
nearly perfect correlation (0.990), while traits like Seedling 
Vigour Index-II with seedling dry weight (0.969), seedling 
height with Root length (0.911), seedling Vigour Index-I 
with seedling height (0.950) and many other traits exhibited 
a strong positive correlation (Fig. 2). These correlations 
could potentially lead to multicollinearity issues. 

In addressing the challenge of multicollinearity within our 
dataset, a systematic approach through correlation analysis 
was employed to scrutinize the interrelationships among 
independent variables (Hair et al., 1998). Calculating 
the correlation matrix allowed for the identification of 
pairs of variables exhibiting high correlation coefficients, 
indicative of potential multicollinearity (Kutner et al., 2005). 
Subsequently, strategic measures were taken, such 
as variable selection based on theoretical significance, 
dimensionality reduction using techniques like Principal 
Component Analysis (Costello and Osborne, 2005), 
and variable transformations to alleviate the observed 
correlations.

Principal Component Analysis and Factors selection 
based on Scree plot: The study incorporated 42 rice 
genotypes for Principal Component Analysis (PCA) 
to analyze 21 traits related to early seedling vigour, 
yield, and yield attributing characteristics. The resulting 
Principal Components (PCs) revealed that only four PCs 
exhibited eigenvalues surpassing 1.000, collectively  

 

 
 

Fig. 2. Heatmap of correlation coefficients of 21 traits of rice genotypes. 
 
Table 2. Eigenvalues, % variance and cumulative eigenvalues of Rice genotypes. 
PC Eigenvalues Variance (%) Cum. variance (%) 

PC1 8.350 39.761 39.761 
PC2 3.936 18.743 58.504 
PC3 2.876 13.696 72.199 
PC4 1.521 7.245 79.444 
PC5 0.935 4.451 83.895 
PC6 0.861 4.100 87.995 
PC7 0.555 2.645 90.640 
PC8 0.484 2.305 92.945 
PC9 0.390 1.856 94.801 
PC10 0.312 1.486 96.287 
PC11 0.275 1.312 97.598 
PC12 0.166 0.790 98.388 
PC13 0.139 0.663 99.051 
PC14 0.109 0.519 99.570 
PC15 0.082 0.391 99.961 
PC16 0.006 0.028 99.989 
PC17 0.002 0.008 99.997 
PC18 0.000 0.002 99.999 
PC19 0.000 0.001 100.000 
PC20 0.000 0.000 100.000 
PC21 0.000 0.000 100.000 
 

explaining approximately 79.444% of the total variability  
(Table 2). PC1, with an eigenvalue of 8.350, accounted 
for 39.761% of the variability, followed by PC2 (eigenvalue 
3.936, 18.743% variability), PC3 (eigenvalue 2.876, 
13.696% variability), and PC4 (eigenvalue 1.521, 7.245% 
variability). Subsequent PCs exhibited a gradual decline 
in variability. The first principal component, representing 
a linear combination of the original predictor variables, 
captured the maximum variance in the dataset. Its 
selection is crucial, as it determines the direction of 
the highest variability. In this context, the substantial 
variability captured by PC1, with a 39.761% contribution, 
underscores its importance for guiding the selection 
of lines, making them particularly desirable for further 
breeding. Similar results were observed by Prasad et al. 
(2023).

Cattell (1996) introduced a visual diagnostic tool known 
as the Scree plot for determining the optimal number of 
factors in factor analysis. The plot depicts eigenvalue 
magnitude on the vertical axis against the corresponding 
factor numbers on the horizontal axis. Dots representing 
eigenvalues are connected by a line, and the extraction of 
factors is halted at the point where an ‘elbow’ or levelling 
of the plot occurs. This graphical test aids in identifying 
the ideal number of factors to extract before the influence 
of unique variance surpasses the common variance 
structure (Hair et al., 1998; Cattel, 1973). In Fig. 3, the 
Scree test graphically presents eigenvalues against the 
ten components in the order of extraction. Larger factors 
with higher eigenvalues are initially extracted, followed by 
smaller ones. The Scree plot serves as a decisive tool for 
discerning the number of factors to retain (Shrestha, 2021). 
Notably, the Scree plot in this study (Fig. 3) indicates the 
presence of four factors with eigenvalues greater than 
one, collectively explaining a substantial portion of the 
total variance. The remaining factors contribute minimally 
to the overall variability and are considered less critical. 
Consequently, only these four influential factors will 

Fig. 2. Heatmap of correlation coefficients of 21 traits of rice genotypes
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Fig. 3. Scree plot 
 
 
Table 3. Factorial loadings, communalities, uniqueness, and predicted genetic gains (PSG) based on 
the multi-trait genotype–ideotype distance index (Bold values represent traits with high contribution 
to each component). 

VAR FA1 FA2 FA3 FA4 Communality Uniquenesses 
PSG 
(%) sense goal 

Days to 50% 
flowering 0.272 

-
0.758 0.192 

-
0.053 0.689 0.311 15.759 increase 100.000 

Plant height 
(cm) 

-
0.224 

-
0.763 0.179 

-
0.413 0.835 0.165 16.181 increase 100.000 

Panicle 
length (cm) 

-
0.382 

-
0.708 

-
0.139 

-
0.014 0.667 0.333 22.609 increase 100.000 

Number of 
panicles 
plant-1 

-
0.310 0.246 

-
0.333 0.411 0.436 0.564 11.782 increase 100.000 

1000 grain 
weight (g) 

-
0.852 0.037 

-
0.101 

-
0.236 0.793 0.207 19.543 increase 100.000 

Number of 
filled grains 
panicle-1 0.315 

-
0.889 0.010 

-
0.011 0.891 0.109 16.981 increase 100.000 

Number of 
grains 
panicle-1 0.355 

-
0.874 0.049 0.024 0.893 0.107 19.716 increase 100.000 

Spikelet 
fertility (%) 

-
0.246 

-
0.229 

-
0.182 

-
0.307 0.240 0.760 25.602 increase 100.000 

First count of 
germination 
(%) 

-
0.256 

-
0.055 

-
0.944 

-
0.024 0.960 0.040 10.618 increase 100.000 

Final count 
of 
germination 
(%) 

-
0.226 

-
0.102 

-
0.912 

-
0.080 0.899 0.101 17.725 increase 100.000 

Rate  of 
germination 

-
0.266 0.079 

-
0.790 0.119 0.716 0.284 14.191 increase 100.000 

Germination - 0.033 - 0.215 0.731 0.269 17.626 increase 100.000 

Table 2. Eigenvalues, % variance and cumulative eigenvalues of Rice genotypes.

PC Eigenvalues Variance (%) Cum. variance (%)
PC1 8.350 39.761 39.761
PC2 3.936 18.743 58.504
PC3 2.876 13.696 72.199
PC4 1.521 7.245 79.444
PC5 0.935 4.451 83.895
PC6 0.861 4.100 87.995
PC7 0.555 2.645 90.640
PC8 0.484 2.305 92.945
PC9 0.390 1.856 94.801

PC10 0.312 1.486 96.287
PC11 0.275 1.312 97.598
PC12 0.166 0.790 98.388
PC13 0.139 0.663 99.051
PC14 0.109 0.519 99.570
PC15 0.082 0.391 99.961
PC16 0.006 0.028 99.989
PC17 0.002 0.008 99.997
PC18 0.000 0.002 99.999
PC19 0.000 0.001 100.000
PC20 0.000 0.000 100.000
PC21 0.000 0.000 100.000

be further considered in the calculation of the MGIDI 
index. This selective focus ensures a more targeted 
and meaningful analysis, aligning with the identified 
dimensions of maximum variance in the dataset.

Considering four factors from the initial set of 21 traits, 
which collectively contribute to 79.444 percent of the 
total variation among traits, analysis revealed distinct 
trait groupings. These factors provide a more streamlined 

perspective on the interrelatedness of traits. Factor 
1 encompasses traits such as 1000 grain weight (g), 
seedling fresh weight (mg), seedling dry weight (mg), 
shoot length (cm), root length (cm), seedling height 
(cm), seedling vigour index-I, and seedling vigour index-
II. Factor 2 is associated with traits like days to 50% 
flowering, plant height (cm), panicle length (cm), number 
of filled grains per panicle, number of grains per panicle, 
and grain yield per plant (g). Factor 3 is linked to traits 

Fig. 3. Scree plot
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including first count of germination (%), final count of 
germination (%), rate of germination, and germination 
index. Lastly, Factor 4 is associated with traits like 
number of panicles per plant, spikelet fertility (%), and 
root to shoot ratio (Table 3). The average communality 
and uniqueness accounted for 79.4% and 20.6%, 
respectively, of all the genetic variability in the dataset, 
as outlined in Table 3. This reaffirms the efficacy of factor 
analysis in establishing an index that optimally selects 
traits (Olivoto and Nardino, 2021). Evaluation of the 
MGIDI index demonstrated desired genetic gains across 
all 21 traits, with a total genetic gain of 273.025 percent. 
Noteworthy traits such as spikelet fertility, seedling dry 
weight, panicle length, number of grains per panicle, 
and 1000 grain weight exhibited substantial percent  
selection gains of 25.062, 23.472, 22.609, 19.716, and 
19.543, respectively (Table 3). This emphasizes the 
effectiveness of the MGIDI index in facilitating targeted 
and favourable trait selection for enhanced crop 
improvement strategies.

Selection of Genotypes Using MGIDI: In this study, 21 
traits were employed to assess variations among the 42 
rice genotypes. Among the 42 rice genotypes evaluated, 
the Multi-Trait Genotype–Ideotype Distance Index 
(MGIDI) pinpointed six accessions as high-performing 
for multiple traits, offering significant potential for the 
simultaneous improvement of twenty-one measured 
traits in rice breeding programs (Fig. 4. and Table 4). 
The genotypes identified by the MGIDI index—SM227, 
NLR33892, MTU3626, 239(3), SMB3, and 405C3—
emerge as promising candidates with exceptional 
characteristics (Fig. 4). Notably, 405C3, situated near 
the cut point indicated by the red line, suggests intriguing 
features that warrant further investigation. Researchers 
are encouraged to scrutinize genotypes in close proximity 
to the cutpoint, as emphasized by Olivoto and Nardino 
(2021). The MGIDI index efficiently selected accessions 
SM227, NLR33892, MTU3626, 239(3), SMB3, and 
405C3 as promising candidates for direct-seeded rice 
improvement programs. The versatility of the MGIDI 

Table 3. Factorial loadings, communalities, uniqueness, and predicted genetic gains (PSG) based on the 
multi-trait genotype–ideotype distance index (Bold values represent traits with high contribution to each 
component)

VAR FA1 FA2 FA3 FA4 Communality Uniquenesses PSG (%) sense goal
Days to 50% flowering 0.272 -0.758 0.192 -0.053 0.689 0.311 15.759 increase 100.000

Plant height (cm) -0.224 -0.763 0.179 -0.413 0.835 0.165 16.181 increase 100.000

Panicle length (cm) -0.382 -0.708 -0.139 -0.014 0.667 0.333 22.609 increase 100.000
Number of panicles 
plant-1 -0.310 0.246 -0.333 0.411 0.436 0.564 11.782 increase 100.000

1000 grain weight (g) -0.852 0.037 -0.101 -0.236 0.793 0.207 19.543 increase 100.000
Number of filled grains 
panicle-1 0.315 -0.889 0.010 -0.011 0.891 0.109 16.981 increase 100.000

Number of grains 
panicle-1 0.355 -0.874 0.049 0.024 0.893 0.107 19.716 increase 100.000

Spikelet fertility (%) -0.246 -0.229 -0.182 -0.307 0.240 0.760 25.602 increase 100.000
First count of 
germination (%) -0.256 -0.055 -0.944 -0.024 0.960 0.040 10.618 increase 100.000

Final count of 
germination (%) -0.226 -0.102 -0.912 -0.080 0.899 0.101 17.725 increase 100.000

Rate  of germination -0.266 0.079 -0.790 0.119 0.716 0.284 14.191 increase 100.000
Germination index -0.055 0.033 -0.825 0.215 0.731 0.269 17.626 increase 100.000
Seedling fresh 
weight(mg) -0.880 -0.006 -0.293 -0.014 0.860 0.140 13.997 increase 100.000

Seedling dry weight(mg) -0.940 0.011 -0.141 -0.053 0.906 0.094 23.472 increase 100.000

Shoot length (cm) -0.851 0.070 -0.018 -0.445 0.928 0.072 4.039 increase 100.000
Root length (cm) -0.776 0.092 -0.157 0.554 0.941 0.059 2.722 increase 100.000
Seedling height(cm) -0.938 0.097 -0.118 0.182 0.936 0.064 1.070 increase 100.000
Root to shoot ratio 0.094 0.007 -0.146 0.951 0.934 0.066 5.246 increase 100.000

Seedling Vigour Index-I -0.870 0.043 -0.394 0.126 0.929 0.071 2.591 increase 100.000

Seedling Vigour Index-II -0.898 -0.021 -0.354 -0.068 0.937 0.063 3.330 increase 100.000

Grain yield plant-1 (g) -0.199 -0.659 -0.296 -0.018 0.562 0.438 8.225 increase 100.000

Average 0.794 0.206
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Table 4. The multi-trait genotype-ideotype distance index for Rice genotypes

S.No. Genotype MGIDI S.No. Genotype MGIDI
1 SM227 3.144 22 28C1 5.372
2 NLR33892 3.287 23 187(1) 5.389
3 MTU3626 3.598 24 488C 5.450
4 239(3) 4.018 25 419(1) 5.502
5 SMB3 4.092 26 ND60 5.507
6 405C3 4.229 27 419(3) 5.526
7 MTU1121 4.284 28 ND44 5.607
8 221C3 4.390 29 MDP6 5.667
9 457C2 4.452 30 273C2 5.681
10 NDP3 4.486 31 ND42 5.741
11 76C2 4.663 32 MD4 5.872
12 ND13 4.742 33 476C3 5.895
13 IR64 4.770 34 N22 C3 5.974
14 425C3 4.846 35 187(3) 6.179
15 150(3) 5.006 36 54(3) 6.200
16 130C 5.036 37 MDP2 6.276
17 81C 5.084 38 NLR34449 6.426
18 538(3) 5.152 39 MDP4 6.467
19 153C1 5.205 40 MDP3 6.492
20 MD5 5.207 41 MTU1010 6.841
21 46C2 5.227 42 BPT5204 7.210

 

 

 
 
 
Fig. 4. Rice accession rankings showing selected accessions using the multi-trait genotype– ideotype 
index (MGIDI). The selected accessions are shown as red dots, while the unselected accessions are 
shown as black dots. The red circle represents the cut point according to the selection pressure. 

Fig. 4. Rice accession rankings showing selected accessions using the multi-trait genotype– ideotype index 
(MGIDI). The selected accessions are shown as red dots, while the unselected accessions are shown as 

black dots. The red circle represents the cut point according to the selection pressure.
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model is underscored by its successful application in 
assessing ideal yield and yield-related traits in various 
crops such as Bush Yam (Adewumi et al., 2023), 
Maize (Palaniyappan et al., 2023), Wheat (Meier et al., 
2021), Eggplant (Uddin et al., 2021), Guar (Cymopsis 
tetragonoloba) (Benakanahalli et al., 2021), soybean 
(Woyann et al., 2019, Volpato et al., 2019). These diverse 
studies collectively highlight the efficiency of multivariate 
selection indices for simultaneous trait selection. 
Moreover, Olivoto and Nardino (2021) have indicated that 
MGIDI stands out as the most efficient index for selecting 
genotypes with desired characteristics, further reinforcing 
its applicability and effectiveness in crop improvement 
strategies.

Jalalifar et al. (2023) shed light on the promising prospects 
of selected rice genotypes through MGIDI in their study, 
emphasizing their careful selection as a valuable resource 
for breeding programs. These chosen genotypes serve 
as a foundation for creating recombinant populations 
through strategic crosses, fostering maximum genetic 
diversity for the development of new rice lines. This 
innovative approach aligns with sustainable and effective 
crop improvement strategies.

Strengths and Weaknesses of Genotypes Based on MGIDI 
Factors: Fig. 5. provides a comprehensive overview of 
the strengths and weaknesses exhibited by different 

genotypes, delineated by the contribution of each factor 
to the Multi-Trait Genotype–Ideotype Distance Index 
(MGIDI). Accessions associated with Factor 1 (FA1), such 
as SMB3 and MTU3626, demonstrate particular strengths 
in traits such as 1000 grain weight (g), seedling fresh 
weight (mg), seedling dry weight (mg), shoot length (cm), 
root length (cm), seedling height (cm), seedling vigour 
index-I, and seedling vigour index-II (Fig. 5. and Table 3). 
On the other hand, accessions like 239(3) and NLR33892, 
linked to FA2, showcase strength in traits like days to 50% 
flowering, plant height (cm), panicle length (cm), number 
of filled grains per panicle, number of grains per panicle, 
and grain yield per plant (g). Furthermore, MTU3626 and 
405C3, associated with FA3, exhibit strength in traits like 
first count of germination (%), final count of germination 
(%), rate of germination, and germination index. Lastly, 
Factor 4 (FA4) with accessions like NLR33892 and SM227 
demonstrates strength in traits like number of panicles per 
plant, spikelet fertility (%), and root to shoot ratio.

These insights into the strengths and weaknesses of 
genotypes can serve as valuable guidance for selecting 
parents in future breeding programmes. Mamun et al. 
(2022) in their study underscored the significance of ideal 
rice mutants identified through MGIDI, emphasizing their 
potential for improved quantitative traits. The rice lines 
identified, including those highlighted in this study, emerge 
as optimal genotypes for future rice breeding programs,  

 

 
 
Fig. 5. The strengths and weaknesses of the selected genotypes are shown as the proportion of each 
factor on the computed multi-trait genotype–ideotype index (MGIDI). The smaller the proportion 
explained by a factor (closer to the external edge), the closer the traits within that factor are to the 
ideotype. The black broken circle at the center shows the theoretical value if all the factors 
contributed equally.  
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playing a pivotal role in enhancing overall crop quality. 
This strategic utilization of factors and traits contributes 
to the development of resilient and high-performing rice 
varieties.

The Multi-Trait Genotype–Ideotype Distance Index 
(MGIDI) demonstrated remarkable efficiency in selecting 
superior rice genotypes, showcasing desirable gains 
across multiple traits. The identified genotypes, including 
SM227, NLR33892, MTU3626, 239(3), SMB3, and 
405C3, through MGIDI underscores their potential 
for commercial release or utilization as key breeding 
materials in direct-seeded rice improvement programs. 
The comprehensive assessment of strengths and 
weaknesses provided valuable insights, emphasizing 
the significance of an ideal rice genotype with improved 
quantitative traits. These identified genotypes stand out 
as prime candidates for prospective breeding programs, 
positioning MGIDI as a transformative tool for enhancing 
rice varieties with enhanced early seedling vigor and 
yield traits. The adoption of MGIDI presents a promising 
and innovative pathway for advancing rice breeding 
strategies, contributing to the development of resilient 
and high-performing rice varieties poised for sustainable 
agricultural practices.
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