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Abstract

Cotton production in India by the vast majority comes from cotton hybrids whose genetic purity is of great significance
in the seed production chain and trade. Therefore, there is a need to develop a rapid, reliable and reproducible
technique to assess the genetic purity of cotton hybrids as the traditional, morphological traits-based ‘Grow-Out Test’
is resource intensive, time consuming, tedious and not an infallible procedure. In this regard, a study was planned to
understand the genetic diversity among the hybrids and their parents and also to identify SSR markers for confirmation
of genetic purity or hybridity. One intra-arboreum hybrid, CICR2 (DS 5 GMS x LD 327 Sel.), four intra-hirsutum
hybrids viz., CSHH198 (CSH 19 x CSH 8), CSHH238 (SH 2379 9Y x PIL 8 Sel.), CSHH243 (CSH 2013 x CSH 43),
CSHH1862 (GMS 16A x CB 33) and one hirsutum x barbadense hybrid, Phule 388 (RHC-006 x RHCb-001) along with
their respective parental lines were selected for molecular characterization. Of the total 215 SSR markers surveyed, 60
markers conveyed polymorphism. The information conveyed by the polymorphic SSR markers was utilized to assess
the molecular divergence among the study material. Maximum genetic dissimilarity of 0.66 was noted between Phule
388 and LD 327 (Sel.), and between RHC-006 and DS 5 (GMS). Minimum genetic dissimilarity of 0.07 was observed
between CSHH1862 and CB 33, followed by 0.11 between CICR2 and DS 5 (GMS). SSR markers were highly
efficient in capturing both intra-species and inter-species level diversity. The clustering and factorial analysis were in
congruence with the species of Gossypium. The diploid species genotypes were clustered separately and distinctly
from the rest of the genotypes. All the hirsutum hybrids and their respective parents were found closely clustered. The
inter-specific hybrid, Phule 388 along with its parents was found grouped closely. The genetic purity of the hybrids was
confirmed using identified SSR markers [GH486, BNL1421, BNL3594, JESPR151 for G. hirsutum hybrids, CSHH198;
GH486, BNL2449, JESPR151, TMB0436 for G. hirsutum hybrids, CSHH238; BNL2449, JESPR151, JESPR152 for
G. hirsutum hybrid, CSHH243 and GH527, BNL3812, TMB1484, TMB1645, NAU1190, BNL3816 for inter-specific G.
hirsutum x G. barbadense hybrid Phule 388]. The SSR markers were efficient in the analysis of hybrid seed purity. The
information generated in the present study about genetic diversity and genetic purity testing will greatly facilitate quality
seed production of these cotton hybrids and thus, better cotton production.
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INTRODUCTION

Cotton is the world’s most important source of natural  of =37 million bales (https://cotcorp.org.in/statistics.aspx).
textile fibre and a significant oilseed crop. India leads the ~ Cotton production in India by the vast majority comes from
world in area and production of cotton with an estimated  cotton hybrids. Hybrids have an advantage of heterosis
area of =13 million hectares with a production estimate by the virtue of genomic heterozygosity and are produced
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through hybridization between two genetically diverse
pure lines (near homozygous and homogenous) having
better trait complementation. These hybrid seeds then
need to be authenticated for genetic purity, parentage and
quality potential before they are released for cultivation
by the farmers. Mechanical handling, outcrossing and
ecological adaptation and at times, mutations may
deteriorate the identity and purity of the hybrid seeds.
The success of hybrid cotton production depends upon
timely production and an adequate supply of genetically
pure hybrid seeds to the farmers. It is estimated that for
every 1% impurity in the hybrid seed, there will be a yield
reduction of 100 kg per hectare (Mao et al., 1996). Thus,
the genetic purity of hybrids is of great significance in the
seed production chain and trade.

The genetic purity of the hybrid is assessed traditionally
by Grow-Out Test (GOT) which is based on morphological
traits (Tatineti et al., 1996). This procedure is resource
intensive, time consuming, tedious and not infallible
procedure. These morphological traits are sensitive
to environmental variations and prone to subjective
assessment. Owing to this, it can be difficult to distinguish
the morphological differences between true hybrids and
off types, especially when the parents share a closer
pedigree (Selvakumar et al., 2010). The resource
demanding and time consuming GOT may lead to delay
in planting and resultantly can affect seed viability (Ali et
al., 2008). Therefore, it is necessary to develop a rapid,
reliable and reproducible technique to assess the genetic
purity of cotton hybrids. Earlier studies have explored
DNA marker systems such as RFLP (Pendse et al.,
2001), RAPD (Mehetre et al., 2007), AFLP (Rana and
Bhat, 2004), SSR (Saravanan et al., 2007; Selvakumar
et al., 2010; Menka et al., 2016) and ISSR (Rana et al.,
2006) to rapidly screen the genetic purity of hybrid seed.
These molecular markers precisely assess the genotype,
and not the phenotype (Sundaram et al., 2008). Among
these markers, SSR markers are widely preferred for
genetic purity testing (Saravanan et al., 2007; Selvakumar
et al., 2010; Menka et al., 2016, Bora et al., 2016; Ben
Romdhane et al., 2018), DNA fingerprinting (Santhy et al.,
2019; Santosh et al., 2020), genetic diversity analysis (Abd
El-Moghny et al., 2017) apart from other plant breeding
applications owing to their reproducibility, co-dominant
inheritance, genome-wide presence, robustness, higher
polymorphism and analytical simplicity (Rakshit et al.,
2011). Therefore, this study was planned to understand
the genetic diversity among the hybrids and their parents
and to identify SSR markers for confirmation of genetic
purity or hybridity.

MATERIALS AND METHODS

The study material included one intra-arboreum hybrid,
CICR2 (DS 5 GMS x LD 327 Sel.), four intra-hirsutum
hybrids viz., CSHH198 (CSH 19 x CSH 8), CSHH238
(SH 2379 9Y x PIL 8 Sel.), CSHH243 (CSH 2013 x CSH

43), CSHH1862 (GMS 16A x CB 33) and one hirsutum x
barbadense hybrid, Phule 388 (RHC-006 x RHCb-001)
andtheirrespective parental lines. The detailed information
about the study material is provided in Table 1. The pure
seeds of these hybrids and their male and female parent
were received from their respective breeders/institutions.
The freshly opened young leaves of each of the hybrid and
their parents were taken for extraction of genomic DNA
and maintained in ice cold conditions. The genomic DNA
was extracted using the quick Cetyl Trimethyl Ammonium
Bromide method (Paterson et al., 1993). Extracted DNA
was quantified on 0.8% agarose gel and quality was
assessed using a spectrophotometer. The genomic DNA
of these 18 genotypes (6 hybrids and their respective
parents) was profiled to identify DNA polymorphisms
using 215 genomic SSR markers and polymorphic
markers were identified. The information conveyed by
the polymorphic SSR markers was utilized to assess the
molecular divergence among the study material. PCR
amplification was carried out in 15ul reaction using the
touchdown PCR protocol in Veriti® 96 well Fast Thermal
Cycler (Applied Biosystems). The PCR amplification
programme (Rakshit et al., 2010) consisted of an initial
denaturation step at 94°C for 7 min (step-1), followed by
9 cycles (step-2) of 94°C for 15s, 65°C for 30s and 72°C
for 60s with touch down by 1°C in each cycle from 65°C to
56°C followed by 40 cycles (step-3) of 94°C for 15s, 55°C
for 30s and 72°C for 60s. The final extension was carried
out at 72°C for 7 min (step-4). The PCR amplicons were
electrophoresed on 4% agarose gel stained with ethidium
bromide and visualized under UV transillumination.
The molecular profiles were visually scored based on
the product size in comparison with the standard 50bp
DNA ladder (Thermo Scientific). The allelic data was
converted into 1 (presence) — 0 (absence) binary matrix
to estimate the genetic dissimilarity indices based on
Jaccard’s similarity coefficient. The genetic dissimilarities
among the genotypes were utilized for clustering of
the genotypes using the Neighbour Joining method
and factorial analysis employing DARwin 6.0 software
(Perrier et al., 2003). In order to confirm the hybridity or
genetic purity, the genomic DNA of hybrid vis-a-vis its
male and female parent was assayed with polymorphic
SSR markers. The SSR markers clearly distinguishing
the male and female parent of each of the hybrid was
identified among the 60 polymorphic SSR markers. The
markers producing multiple bands with heterozygosity
were excluded for genetic purity analysis. SSR markers
which revealed different, homozygous alleles in parents
with a distinct difference in allele size were identified for
each of the hybrids. The genetic purity was confirmed
in each of the hybrids using identified markers distinctly
polymorphic between respective parents.

RESULTS AND DISCUSSION
Of the total 215 SSR markers employed for polymorphism
survey among the hybrids and their parents, 60 markers
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Punjab, Haryana
and Rajasthan

165-170 34 33.7 27.5 23.5 4.6

CSH 43

CSH 2013 x
GMS 16A x

CICR, Sirsa

2008

HxH

4 CSHH243

Punjab, Haryana
and Rajasthan

160-170 21 345 27.8 21.9 4.2

CB 33
RHC-006 x

2011 CICR, Sirsa

HxH

5 CSHH1862

2002 MPKYV, Rahuri RHCb-001 170-180 17-20 34 35 23.8 34 Maharashtra

HxB

Phule 388
(RHB -388)

6

*H — Gossypium hirsutum; B — Gossypium barbadense; A — Gossypium arboreum

conveyed a polymorphism of 27.9 per cent. The list of
polymorphic SSR markers and their details is provided
in Table 2. The higher polymorphism per cent observed
in the present study might be due to inclusion of different
species of cotton in the study. In our earlier diversity
studies, 16 and 27 per cent SSR polymorphism was
observed in G. arboreum (Santosh et al., 2020) and
tetraploid cotton (Santhy et al., 2019), respectively.
Earlier, Selvakumar et al. (2010) observed 30 per cent
polymorphism during genetic purity analysis of three cotton
hybrids using SSR markers. Menka et al. (2016) noted
20 per cent polymorphism while studying hybrid purity
in two cotton hybrids. Marker polymorphism depends on
many factors such as breeding behaviour of the species,
genetic diversity in the study material, sample size,
sensitivity of genotyping method and location of primers
in the genome used for study. The information conveyed
by the polymorphic SSR markers was utilized to assess
the molecular divergence among the study material.

The genetic dissimilarity among the genotypes under
study is presented in Table 3. Maximum genetic
dissimilarity of 0.66 was noted between inter-specific
H x B hybrid, Phule 388 with G. arboreum line LD 327
(Sel.) and between G. hirsutum line RHC-006 with G.
arboreum line DS 5 (GMS). The dissimilarity of 0.65 was
observed between inter-specific H x B hybrid, Phule 388
and intra-arboreum hybrid, CICR2 and its female parent
DS 5 (GMS), between G. hirsutum line CSH 43 and G.
arboreum line LD 327 (Sel.), between G. hirsutum line
RHC-006 and G. arboreum line LD 327 (Sel.). The lesser
genetic diversity was observed between the hybrids and
its parents. The minimum genetic dissimilarity of 0.07
was observed between intra-hirsutum hybrid, CSHH1862
and its female parent CB 33, followed by 0.11 between
intra-arboreum hybrid, CICR2 and its female parent DS 5
(GMS). The genetic similarity of 0.85 was noted between
intra-hirsutum hybrid, CSHH243 and its male parent CSH
2013, and between intra-hirsutum hybrid, CSHH1862 and
its female parent GMS 16A, and between GMS 16A and
CB 33. The SSR markers were highly efficient in capturing
both intra-species and inter-species diversity (Abd El-
Moghny et al., 2017; Santhy et al., 2019; Santosh et al.,
2020) as they revealed higher genetic diversity between
different species and lesser diversity within species or
between hybrids and their parents.

The information on genetic dissimilarity among the
genotypes was utilized for clustering and factorial
analysis. Both clustering based on unweighted
Neighbour Joining (Fig. 1) and factorial analysis (Fig. 2)
depicted a pattern of genetic diversity and the grouping
of genotypes was in congruence with the ploidy of the
species. The diploid species (G. arboreum) hybrid,
CICR2 along with their parents [DS 5 (GMS) and LD
327 (Sel.)] were clustered separately and distinctly from
the rest of the genotypes. All the hirsutum genotypes
(Hybrids CSHH198, CSHH238, CSHH243, CSHH1862
and their respective parents were also found closely
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Table 2. List of polymorphic markers, their repeat motif and sequence information

S. No. Marker Repeat motif Forward primer Reverse Primer
1 BNLO0852 (CA)13 TGCTTTCAGCCAATGACTTG AACAATGCCCCCAATATTCA
2 BNLO861 (AC)21 AAGATGGTAGTGGCTTGAACG GTTCCTTCTTACTTCCATGTGC
3 BNL1045 (AG)16, (CA)10 GGCAATCAACTTTAGGCTGC TGGTGAAGATCCCCATTTTC
4 BNL1227 (AG)15 CATCAAGATCTATCTCTCTCTATACCG TTTACCCTCCGATCTCAACG
5 BNL1317 (AG)14 AAAAATCAGCCAAATTGGGA CGTCAACAATTGTCCCAAGA
6 BNL1421 (AG)29, (AG)14 TGAAGATTTGGAGGCAATTG GAAATCAAGCCTCAATTCGG
7 BNL1604 (AG)25 AGAGGGAGTAAAGATTTGGGG TCCAGTTCTTTTTGCCTTGG
8 BNL2449 (GA)16, (TC)16 ATCTTTCAAACAACGGCAGC CGATTCCGGACTCTTGATGT
9 BNL2544 (AG)11 GCCGAAACTAAAACGTCCAA TCCTTACTCACTAAGCAGCCG
10 BNL2634 (AG)11 AACAACATTGAAAGTCGGGG CCCAGCTGCTTATTGGTTTC
11 BNL2725 (AG)28 AGCATTAGCAGGCACCTTTATA ACATTTGGTTCGTTTTCTCTTTAA
12  BNL2741 (GA)15, (TC)15 TGTGGAGTTGTTTGTCTCGC GTCAACAGTCCTCTGCTGCA
13 BNL3031 (AG)27 AGGCTGACCCTTTAAGGAGC AACCAACTTTTCCAACACCG
14 BNL3090 (AG)31 GAAATCATTGGAAGAACATATACTACA TTGCTCCGTATTTTCCAGCT
15 BNL3383 (AG)10, (CT)11 GTGTTGTCATCGGCACTGAC TGCAATGGTTCAGTGGTGAT
16 BNL3442 (CA)14(TA)S CATTAGCGGATTTGTCGTGA AACGAACAAAGCAAAGCGAT
17 BNL3594 (TC)37 AGGGATTTTGATTGTTGTGC TGAATTCAAAACAAATGTTAGCC
18 BNL3644 (TC)13 GTGCTGTTTGGGCCTTACAT TAAGCGCATTGACACACACA
19 BNL3806 (TG)18, (AG)18, GACAGGCCAGACCAGAACAT TCAAACAAAGCACATATATAATACACA
(AC)9+N+(CA)7+C+N+
(CA)2+(AT)5
20 BNL3812 (CA)6+C+N+(CA)11 AACCACCCCAATTTGATGAT GGGTTTCTCCTTCCCTGTTC
21 BNL3816 (TG)15, (TG)5TA(TG)15 GTTAGCCACGTGTTAGTTCTATG ATCGATCACTTGCTGGTTCC
22 BNL3992 (TC)26, (GA)26 CAGAAGAGGAGGAGGTGGAG TGCCAATGATGGAAAACTCA
23 BNL3995 (AC)16 ATATTTTATTCTTTTAATAGCTTTATTCCC TTGGAAAAACCCATGGTGAT
24  BNL4061 (CA)26 TAGTAGGTGTCCCCTGTGCC TGAAGCACCAGATGAAAACA
25 BNL4071 (GT)7+(GA)23 CATTTCAGAAGTTGACATTTTCG CACTGCCCCTAAGAAGTTGC
26 BNL4096 (GT)8+(GA)17 TGTGGTGGGTTTCACTTTCA GACACGGATCCTACTGAGCC
27 BNL0946 (GA)14 GCTGTTGCTCCACATCTCCT GGGCAAACAGATAGGCAGAA
28 CMO0043 (TC)20 GCGCAGATATTATTATCACAGC TATATAAATTTGCATCAGTTGGC
29 CMO0066 (CT)14 GGATACGTAGGCCTCCACATATTC GCTGCCTGCTGTTGAATGCTG
30 DPL0600 - AGGCACCTCTTTAGTGATACTAATTCC TTAAGGGTAGCCCTCTCAATCTCT
31 GH288 GT(22) CTATTCCACAAGCTTCATTCTGCAG GGAGCACAATGAGGAAGTATACTG
32 GH434 AGA(18) AGAGCTAGTAGGTGGCTTAAAGAG GTGGATGAATTATCTAAGTCGACCG
33 GH470 CT(19) ACATCAACTTTCAAACCGTTCAACC CTGGAAGCTAAATATACAGAGCAAG
34 GH486 TCT(20) TTGTCACCCTAAATTACATTGAATGGC GTAAAGGCTTTGACTACAAGCACC
35 GH527 TCT(6) AGCTGGAGGATTTCAGCTTGATTC ATGCCAGTTAACTTACCACGTTGG
36 GH539 AC(13) AGTTCGTGCCTTTGATACTGAAGG CAAACGAAGTGAATGTTAGTCTATTCG
37 JESPR101 (TA)3(GT)15 CCAAGTCAAGGTGAGTTATATG GCTCTTTGTTACTGAAATGGG
38 JESPR151 (GAA)9(Y)4(GAA)10 CTGGACTAAAAACCTTAACTGG CTCGATTCTAACTCAATCACG
39 JESPR152 (GAA)50 GATGCACCAGATCCTTTTATTAG GGTACATCGGAATCACAGTG
40 JESPR197 (TAC)11 CAATACCTGGAACATAGACAAATG CTTGAGGCTTGCAAAAAATG
41 JESPR215 (GA)22 CGAGAAGATGAGATTGGAGGAG CCCTTCTGAGTTTTCTTTGG
42 JESPR220 (GA)20 CGAGGAAGAAATGAGGTTGG CTAAGAACCAACATGTGAGACC
43 JESPR224 (GA)22 GGGGAGCAACGAAAACTTAGC CCACCATTCTCTTTCATTTTCTCC
44 JESPRO065 (GAA)25 CCACCCAATTTAAGAAGAAATTG GGTTAGTTGTATTAGGGTCGTTG
45 MUCS557 GTT(2)CTG(4) GGCATCTAGTTGAGGGAAGG TGGAACATGCACTTTAATCACC
46 MUCS566  AAC(2)GAC(4) CAGAGGAGAGAAGAGAAGAGAGG GGATTTTGAAGAGCCTCAACC
47 MUCS620 TTA(2)TA(6) CGAAGATGGGAAGAGAAAGG CAAAAGCTAGCAACATTACAACTCC
48 MUSB0100 (AT)5 TTCTGTTCCCACATTTCAAGC AAAGGGGTGCTGGTTTCG
49 MUSS161 GGA(4) AGAGGAATCGGACAATGACG CCCAAGAATCTGAAGCATCC
50 MUSS397 GCT(#4) ACAAGCTAACGGTGACTGGC CTTCTCCTCGGGTTTCTTCC
51 NAU1070 (AGG)10 CCCTCCATAACCAAAAGTTG ACCAACAATGGTGACCTCTT
52 NAU1190 (GGC)6 CCATGTCCGTATCCATGTTA TAAGGCAAGATAGGGTCAGG
53 NAU2083 GAC(9) AGAAGAGGTTGACGGTGAAG TGAGTGAAGAACCTGCACAT
54 NAU4073 (ATGT)6 CCCACCCTTTTCTTCTTTTT GCTGCCAAATTTCATCTCTT
55 NAU5046 (CATC)6 CTTCCCTCCTCTGTCTCTCA GAGAGAGGGGAAAGTTAGGG
56 NAU5189 (TTC)8 TGTCCCCCAATCATATTTTC CAACTTCCCAAGCTCGTATT
57 TMBO0436 (GA)5+(GA)17+(GAA)4 TGTGGCACAACCTTCCAAT CGTGTTCTCCATTTGATTCAT
58 TMB1427 (CA)26 TGTTTTTGGGTACAGTTTTGACA TTCTCTTCAAAGGGGAGTGTTT
59 TMB1484 (CA)18 ACCACCCCAATTTGATGATT GGGTTTCTCCTTCCCTGTTC
60 TMB1645 (GA)36+(GA)12 AAATCCATTAGAATGTATAGGG TCAGTTCTTCCGGCTGTAG
783
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Fig. 1. Clustering of genotypes as revealed by polymorphic SSR markers

Factorial analysis: Axes 1/ 2

RHC-006
-

-+.05
-1S CcSH st -.05 .05 1 15 2 .25 3 35
CSHH198 %
CSH2013* - . ~4-.05
sEZArg e e
CSH43*® -
cB -
ERFaEas. +1

185

Fig. 2. Factorial analysis of cotton genotypes
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clustered. Similarly, the inter-specific hybrid, Phule 388
along with its G. hirsutum (RHC-006) and G. barbadense
(RHCb-001) parent formed a distinct group. The factorial
coordinate analysis provides an overall representation
of diversity while, clustering tends to faithfully represent
the individual relations (Santosh et al., 2017). Clustering
based on molecular makers revealed that a particular
hybrid and its parents were grouped together as a cluster
and the hybrid was positioned in a near midway between
its two parents (Rana et al., 2006; Chauhan et al., 2016).
A similar pattern of distinct grouping was observed for the
hybrids Phule 388, CSHH1862 and CICR2.

Out of the 215 SSR markers surveyed, 60 were observed
as polymorphic among the material included in the present
study. Polymorphic markers which clearly differentiated
the male and female parent of each of the hybrids were
identified from the 60 polymorphic markers. The genetic
purity was confirmed in each of the hybrids using identified
markers that differentiated male and female parents
of each hybrid by clear, scorable and unambiguous
amplified fragments. The markers producing multiple
bands with heterozygosity were excluded for genetic
purity analysis. Microsatellite markers in cotton are

-_——

BNL1421

Fig. 3. DNA fingerprinting of G. hirsutum hybrid CSHH198

BNL2449

known to reveal multiple banding patterns per locus
(Rudmann-Maurer et al., 2007; Rana et al., 2006;
Selvakumar et al., 2010; Chauhan et al., 2016), which
may be the result of polyploidy or amplification of repetitive
sequences or due to pollen contamination.

The markers GH486, BNL1421, BNL3594 and
JESPR151 differentiated the parents (CSH19 and
CSH8) of G. hirsutum hybrid, CSHH198 and confirmed
the genetic purity of the hybrid by producing alleles from
both the parents (Fig. 3). The SSR markers viz., GH486,
BNL2449, JESPR151 and TMB0436 produced parent-
specific alleles in the SH2379-9Y and PIL8 Sel. and
hybridity was confirmed in G. hirsutum hybrid, CSHH238
by producing both the parental alleles (Fig. 4). The
parents (CSH2013 and CSH43) of G. hirsutum hybrid,
CSHH243 produced genotype specific alleles for the
markers BNL2449, JESPR151 and JESPR152 (Fig. 5).
These markers produced heterozygous bands specific to
male and female parents of the hybrid, thus confirming
the hybrid purity. The parents of inter-specific hybrid,
Phule 388 were found to be homozygous for different
alleles of GH527, BNL3812, TMB1484, TMB1645,
NAU1190 and BNL3816 (Fig. 6). The hybrid produced

- -‘

JESPR151
BNL3594 '

JESPR151

TMBO0436

Fig. 4. DNA fingerprinting of G. hirsutum hybrid CSHH238
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BNL2449

JESPR152

JESPRIS1] 500l e

Fig. 5. DNA fingerprinting of G. hirsutum hybrid CSHH243

TMB1484

L FMMH

BNL3816
! — -

Fig. 6. DNA fingerprinting of G. hirsutum x G. barbadense interspecific hybrid Phule 388

both G. hirsutum and G. barbadense parent specific
alleles for each of these markers, thus confirming genetic
purity of the hybrid. Markers distinctly differentiating
the parents of intra-arboreum hybrid, CICR2 and intra-
hirsutum hybrid CSHH1862 and also unambiguously
confirming the genetic purity of these hybrids were not
observed in the study. SSR markers are known for their
efficiency in genetic purity analysis and were utilized for
genetic purity testing of different cotton hybrids (Rana
et al., 2006; Selvakumar et al., 2010; Rao et al., 2015;
Chauhan et al., 2016; Menka et al., 2016).

Phenotyping based on morphological traits is very
important as they represent the expressed part of the
genome. Since, most of these morphological traits are
quantitative in inheritance and environmentally influenced,

more often, there exists a risk of categorising genetically
different cultivars as similar or vice-versa owing to
subjective assessment (Santhy and Meshram, 2015).
The SSR markers can be used in the efficient analysis
of hybrid seed purity since this technique is simple to
use, more accurate and not affected by the environment
when compared with GOT. Moreover, SSR based
clustering is known to have a better correlation with the
pedigree than the dendrogram from morphological data
(Giancola et al., 2002). Pattanaik et al. (2018) carried
out the comparison of traditional grow-out test and DNA-
based PCR assay to estimate F hybrid purity in cauliflower
and proposed that molecular marker-based hybrid
purity assessment may serve as an effective substitute
to traditional GOT. A combination of SSR markers and
morphological descriptors is proposed for comprehensive
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and unambiguous cultivar identification and differentiation
(Santhy et al., 2019; Santosh et al., 2020). The present
study has identified polymorphic SSR markers which can
be used in hybrid purity testing. The information generated
in the study about genetic diversity and genetic purity
testing will greatly facilitate the seed production of these
cotton hybrids. The polymorphic SSR markers identified
in the study will facilitate their robust identification and
thus, their licensing and commercialization.
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