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Abstract
Oat holds significant importance in global agriculture and nutrition due to their adaptability and versatility. In the present 
study,  Principal Component Analysis (PCA)  and Regression analysis were carried out to identify the cause and effect 
relationship among various traits. PCA on 13 yield attributes revealed five main components contributing to 80.75% 
cumulative variance. PC1, associated with green fodder yield, dry matter yield, tillers per plant and seed yield was 
a prominent contributor. PC2 was influenced largely by days to 50% flowering and days to maturity. Biplot analysis 
identified two distinct trait groups. Multiple regression analysis revealed tillers per plant, test weight and number of 
spikelets as significant predictors of seed yield. The findings offer insights into genetic association among traits in oat 
by uncovering the quantitative relationships among them and to identify patterns of genetic variation among different 
oat genotypes. The analysis of individual trait regression graphs enhances understanding of trait contributions to seed 
yield. This study advances oat improvement strategies for enhanced crop productivity and resilience.
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INTRODUCTION
Oat (Avena sativa L.) is an essential cereal crop with a 
significant contribution to global agriculture and human 
nutrition (Chawla et al., 2023; Ibrahim et al., 2020). With 
their exceptional adaptability to diverse environmental 
conditions, oat plays a crucial role in providing food, 
feed and fiber (Pankaj and Dhankar, 2023). In addition 
to being a staple diet for humans in the form of oat 
meal and other products (Poutanen et al., 2022), 
oats are also an important component of animal feed 
(Choudhary et al., 2023; Chawla et al., 2022), supporting 
sustainable agricultural systems. Despite the extensive 
economic and nutritional significance of oats, there 
remains untapped potential for crop improvement to 

enhance yield, nutritional content and overall resilience. 
Traditional breeding methods have contributed to varietal 
improvements over the years; however, advancements 
in statistical techniques have paved the way for more 
precise and efficient approaches to oat enhancement. 
Two such techniques, Principal Component Analysis 
and Regression Analysis offer valuable insights into oat 
genetics, phenotype relationships and potential avenues 
for improvement (Bichewar et al., 2023; Kumari and 
Kaushal, 2022).

Principal Component Analysis (PCA) provides a powerful 
tool to analyze complex data sets and identify underlying 
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patterns in multivariate data (Saranprabhakaran et al., 
2021). By reducing the dimensionality of data while 
preserving critical variation, PCA enables the visualization 
of relationships between variables and samples (Ivosev et 
al., 2008). The resulting insights facilitate the identification 
of key traits driving variability, genotype clustering and 
the identification of potentially valuable genotypes in 
oat. Additionally, regression analysis, on the other hand, 
establishes quantitative relationships between variables, 
enabling predictive modeling and hypothesis testing. In 
oat improvement, regression analysis can help uncover 
the associations between genotype and phenotype, 
guiding breeding decisions to select desirable traits 
(Hisir et al., 2012). By leveraging these analytical tools, 
latent patterns within oat data sets can be uncovered to 
identify key variables influencing oat yield  and predictive 
models can be developed to guide targeted breeding 
efforts. Ultimately, the integration of advanced statistical 
techniques with oat improvement strategies holds 
immense promise for enhancing crop yield, nutritional 
quality and resilience, ensuring the continued prosperity 
of this vital cereal crop.

MATERIALS AND METHODS
The research encompassed a total of 62 oat genotypes, 
which also included reference checks (OS 6, JHO 851 
and UPO 212). These genotypes were collected from 
diverse geographical regions across the country and were 
evaluated in augmented design with three row plot of 3 m 
row length (Table 1). The study was conducted during the 
Rabi season of the year 2019-20 at the Research Farm 
Area, Forage Section of the Department of Genetics and 
Plant Breeding at CCS Haryana Agricultural University, 
Hisar, Haryana. 

A total of 13 phenotypic traits were evaluated including 
PH- Plant height (cm), TPL- Number of tillers/plant, NOL- 
Number of leaves/plant, LL- Leaf length (cm), LW- Leaf 
width (cm), PL- Peduncle length (cm), NOS- Number of 
spikelets/panicle, GFY- Green fodder yield/plant (g), DMY- 
Dry matter yield/plant (g), DFF- Days to 50% flowering, 
DM- Days to maturity, SY- seed yield/plant (g), TW- Test 
weight (1000 seed weight in g). The data on phenotypic 
traits were collected from five randomly chosen vigorous 
plants for each genotype except for DFF and DM which 
was recorded on a plot basis. The analysis was performed 
using R STUDIO software (2023.03.1+446). The figures 
and plots were made using the same software. 

RESULTS AND DISCUSSION
PCA was applied to a dataset comprising 62 oat 
genotypes, encompassing 13 traits related to yield. 
Components with an eigenvalue exceeding one were 
preserved and the primary components contributing 
most significantly to the overall variation were identified 
through a scree plot (Fig. 1). These five main components 
contributed a cumulative variance of 80.75%, out of which 
PC 1 contributed (29.1%), followed by PC 2 (18.63%). 

A contribution of 14.62%, 10.29% and 9.11% was made 
from PC 3, PC 4 and PC 5, respectively. PC 1 was 
accounted largely by GFY, DMY, TPL and SY, while  
PC 2 was favorably impacted by DFF, DM, NOS and LL. 
It was further detected that PC 3 was loaded on PL and 
PH, PC 4 on LL and NOS and PC 5 on NOL, PL and DM 
(Table 2). The highest positive and negative values within 
a principal component are responsible for maximum 
differentiation in clustering (Bhatti et al., 2022). Among 
these principal components, PC 1 can be regarded as a 
yield factor. Similar results were recorded by Poonia et 
al., 2021; Zhang et al., 2010. The prominence of yield 
traits on PC1 suggests that variations in GFY, DMY, TPL 
and SY play a pivotal role in shaping the overall variability 
observed among individuals within the population. This 
result aligns with the established understanding that yield 
traits are often critical determinants of a crop’s economic 
and agronomic value (Poonia et al., 2021). The observed 
relationship between PC1 and yield traits suggests that 
genetic factors associated with these traits are closely 
linked to the observed variation. It is plausible that specific 
genes related to yield traits are driving the variation 
captured by PC1. This finding could have significant 
implications for targeted breeding efforts.

Biplot visualization allows for diverse interpretations. The 
alignment of a variable vector with a principal component 
axis indicates its significant contribution specifically 
to that PC. The first group identified by biplot analysis  
(Fig. 2) comprised DM, DFF, SY, NOS and LL. Among 
these traits, the SY vector was found in close proximity 
to PCA 1 axis as it largely contributes to it. While all the 
remaining eight traits were contained in the second group. 
Among these traits, GFY, DMY, NOL, TP and PH vectors 
were closer to PCA 1 axis. GFY, DMY, DFF and DM vector 
had highest length as the length of the arrow indicates the 
proportion of total variance in the data explained by that 
variable along that principal component. Furthermore, the 
angle between two arrows (for e.g. between GFY and 
DMY; DFF and DM; SY and TPL indicates the correlation 
between the corresponding variables (Chawla et al., 
2021). Scores of genotypes that are close together share 
similar characteristics, while those farther apart are more 
dissimilar. The validation of clustering and association 
patterns was confirmed through the utilization of a heat 
map, serving as a conceptual model (Fig. 3). Upon 
careful examination of both the biplot and heat map, few 
outliers were identified, notably the genotypes RO 11-2-2, 
OS 403, and HFO 1108. The possible explanation for this 
is that RO 11-2-2 was earliest maturing genotype, while 
OS 403 displayed the highest seed yield. The genotype 
HFO 1108 displayed the highest green fodder and dry 
matter yield.

The multiple regression analysis results hold significant 
implications for our study, offering valuable insights into the 
relationships between yield attributes and their impact on 
seed yield (Sadras et al., 2017).  Through a comprehensive 
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Table 1. Sixty-two oat genotypes along with their source

S. No. Genotypes Pedigree Source S. No. Genotypes Pedigree Source
1 GP 65 HJ 8 X HFO 267 CCS HAU, Hisar 32 HFO 1109 OS 346 X Kent CCS HAU, Hisar
2 GP 68 Selection from HFO 114CCS HAU, Hisar 33 HFO 1111 Kent X SKO 148 CCS HAU, Hisar
3 GP 158 OS 6 X UPO 212 CCS HAU, Hisar 34 HFO 1112 HFO 114 X Kent CCS HAU, Hisar
4 GP 192 Selection from HJ 8 CCS HAU, Hisar 35 HFO 1113 UPO 212 X SKO 148 CCS HAU, Hisar
5 GP 298 Kent X OS 6 CCS HAU, Hisar 36 HFO 1114 HFO 878 X OS 6 CCS HAU, Hisar
6 GP 492 HJ 8 X Kent CCS HAU, Hisar 37 HFO 1115 HJ 8 X HFO 58 CCS HAU, Hisar
7 GP 580 Selection from OS 7 CCS HAU, Hisar 38 HFO 1116 OS 403 X OS 377 CCS HAU, Hisar
8 GP 781 OS 6 X JHO 851 CCS HAU, Hisar 39 HFO 1117 HJ 8 X OS 346 CCS HAU, Hisar
9 GP 875 Dulo, Introduction  

from Bulgaria
Bulgaria 40 HFO 1118 HJ 8 X JHO 822 CCS HAU, Hisar

10 HFO 424 HJ 8 X Kent CCS HAU, Hisar 41 HFO 1121 FOS 1/29 X HJ 8 CCS HAU, Hisar
11 HFO 529 OS 6 X Kent CCS HAU, Hisar 42 HFO 1122 OS 377 X HJ 8 CCS HAU, Hisar
12 HFO 607 HJ 8 X UPO-04-1 CCS HAU, Hisar 43 HFO 1123 OS 346 X OS 403 CCS HAU, Hisar
13 HFO 611 HJ 8 X UPO 212 CCS HAU, Hisar 44 HJ 8 OS 7 X S3021 CCS HAU, Hisar
14 HFO 707 JHO 822 X NGB  7021 CCS HAU, Hisar 45 OS403 HJ 8 X Algerian CCS HAU, Hisar
15 HFO 806 OL 125 X UPO 212 CCS HAU, Hisar 46 OL 125 Appler X IPC-63 PAU, Ludhiana
16 HFO 818 JO 1 X HFO 267 CCS HAU, Hisar 47 OL 1861 HJ 8 x OL 1610 PAU, Ludhiana
17 HFO 901 UPO 212 X Kent CCS HAU, Hisar 48 OL 1869-1 OL 9 X OL 125 PAU, Ludhiana
18 HFO 902 JHO 822 X NGB 6370 CCS HAU, Hisar 49 OL 1766-2 Advance breeding line PAU, Ludhiana
19 HFO 903 OL 125 X OS 346 CCS HAU, Hisar 50 OL 1874-2 Advance breeding line PAU, Ludhiana
20 HFO 915 UPO 212 X OS 346 CCS HAU, Hisar 51 Kent Introduction USA
21 HFO 917  NGB 6370 X  

NGB 4871
CCS HAU, Hisar 52 RO 11-2-2 Advance breeding line MPKV, Rahuri

22 HFO 1003  HFO 878 X OS 6 CCS HAU, Hisar 53 RO 11-2-6 Advance breeding line MPKV, Rahuri
23 HFO 1005 JHO 822 X NGB 7021 CCS HAU, Hisar 54 JHO 822 IGO 4268 X Indio-6-5-1 IGFRI, Jhansi
24 HFO 1013 UPO 212 X OS 6 CCS HAU, Hisar 55 JHO 99-1 OS 7 X IGO-320-1139-19 IGFRI, Jhansi
25 HFO 1016 UPO 212 X SKO 96 CCS HAU, Hisar 56 JHO 2006-1 Advance breeding line IGFRI, Jhansi
26 HFO 1101 JHO 2006-1 X HJ 8 CCS HAU, Hisar 57 JO 1 Kent X UPO 50 JNKVV, Jabalpur
27 HFO 1104 HFO 878 X UPO 212 CCS HAU, Hisar 58 NDO 1 Local collection NDUA&T, Faizabad
28 HFO 1105 UPO 212 X OS 6 CCS HAU, Hisar 59 PLP 1 Selection from Algerian 

material
CSKHPKV, 
Palampur

29 HFO 1106 Algerian X OS 6 CCS HAU, Hisar 60  OS 6 (C1) * HFO 10 X HFO 55 CCSHAU, Hisar
30 HFO 1107 HJ 8 X OS 6 CCS HAU, Hisar 61  JHO 851 (C2) Selection from Huga 

Kairyokuro
Introduction from 
Japan

31 HFO 1108 HFO 878 X OS 6 CCS HAU, Hisar 62 UPO 212 (C3) VS 1492 X Kent GBPUAT, 
Pantnagar

examination of multiple traits, patterns that shed light on 
the factors influencing seed yield was discerned. Based 
on these results (Table 3), the predicting model equation 
for the seed grain yield (SY) was formulated as: SY = 
-23.782280 + 0.045708 * PH + 1.858241 * TPL - 0.101173 
* NOL + 0.040303 * LL + 0.503800 * LW - 0.100978 * PL 
+ 0.205511 * NOS - 0.009421 * GFY - 0.036908 * DMY 
- 0.053072 * DFF + 0.010333 * DM + 0.369131 * TW. 
These coefficients indicate the anticipated alteration in the 
dependent variable (seed yield) resulting from a unitary 
adjustment in the respective independent variable, with 
all other variables maintained at constant level. These 

traits emerged as statistically significant contributors to 
the model (Kumari and Kaushal, 2022). Notably, TPL 
exhibited a highly positive coefficient of 1.858 indicating 
that an increase in TPL is associated with a substantial 
increase in seed yield. TW is another trait that emerged as 
a predictor within the regression model which significantly 
influences the determination of seed yield. Lastly, NOS 
demonstrated a positive coefficient of 0.205, implying that 
an elevated NOS corresponds to a notable improvement 
in the seed yield. Conversely, GFY displayed coefficients 
near zero, suggesting a more limited influence on the 
outcome. Furthermore, it is worth highlighting that certain 
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Fig. 1 Scree plot depicted eigen values for respective principal components 
 
 
 
 

 
 
 
 
 
 
Fig. 2 Biplot showing relationships between variables and observations in a multivariate dataset.  
 

Table 2. Variance attributable to principal components along with loadings of various traits 

 Variances Principal Components
PC1 PC2 PC3 PC4 PC5

Standard deviation 1.95 1.56 1.38 1.16 1.03
Eigen values 3.8 2.4 1.9 1.3 1.1
Proportion of Variance (%) 29.10 18.63 14.62 10.29 8.11
Cumulative Proportion (%) 29.1 47.73 62.35 72.64 80.75
Factor Loadings
Traits PC1 PC2 PC3 PC4 PC5
PH -0.23 -0.13 -0.44 -0.27 -0.22
TPL -0.39 -0.07 0.41 -0.13 -0.15
NOL -0.37 -0.11 0.33 -0.12 -0.32
LL -0.04 -0.38 -0.14 0.47 -0.16
LW -0.17 0.24 -0.18 0.40 -0.23
PL -0.05 -0.14 -0.59 -0.13 -0.29
NOS -0.19 0.38 -0.10 0.41 -0.23
GFY -0.43 -0.22 -0.10 -0.12 0.06
DMY -0.41 -0.17 -0.05 -0.18 0.21
DFF -0.18 0.48 -0.22 -0.20 0.17
DM -0.22 0.45 -0.08 -0.10 0.29
SY -0.38 0.06 0.13 0.39 0.10
TW -0.12 -0.31 -0.18 0.28 0.66

[PH- Plant height (cm), TPL- Number of tillers/plant, NOL- Number of leaves/plant, LL- Leaf length (cm), LW- Leaf width (cm), PL- 
Peduncle length (cm), NOS- Number of spikelets/panicle, GFY- Green fodder yield/plant (g), DMY- Dry matter yield/plant (g), DFF- 
Days to 50% flowering, DM- Days to maturity, SY- seed yield/plant (g), TW- Test weight]

Fig. 1 Scree plot depicted eigen values for respective principal components
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Fig. 2 Biplot showing relationships between variables and observations in a multivariate dataset.  
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Fig. 3 Heat Map using R studio 
 
 
 
 
 
  

Fig. 3 Heat Map using R studio

Fig. 2 Biplot showing relationships between variables and observations in a multivariate dataset
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Table 3. Multiple regression analysis of different morphological traits

Regression 
coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) -23.782 10.660 -2.231 0.030 *

PH 0.046 0.023 1.937 0.059 .

TPL 1.858 0.388 4.784 1.62e-05 ***

NOL -0.101 0.056 -1.794 0.079 .

LL 0.040 0.065 0.613 0.543

LW 0.503 0.823 0.612 0.543

PL -0.101 0.066 -1.521 0.135

NOS 0.205 0.029 7.155 3.81e-09 ***

GFY -0.0094 0.027 -0.343 0.733

DMY -0.037 0.094 -0.394 0.695

DFF -0.053 0.115 -0.461 0.647

DM 0.010 0.083 0.125 0.901

TW 0.369 0.073 5.056 6.38e-06 ***

Significance codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Multiple R-squared:  0.793, Adjusted R-squared:  0.743

[PH- Plant height (cm), TPL- Number of tillers/plant, NOL- Number of leaves/plant, LL- Leaf length (cm), LW- Leaf width (cm), PL- 
Peduncle length (cm), NOS- Number of spikelets/panicle, GFY- Green fodder yield/plant (g), DMY- Dry matter yield/plant (g), DFF- 
Days to 50% flowering, DM- Days to maturity, SY- seed yield/plant (g), TW- Test weight]

variables, including PH and NOL, exhibited coefficients 
with p-values marginally above conventional significance 
thresholds. While their direct impact on the outcome 
might be subject to further investigation, their proximity 
to significance underscores their potential relevance 
in certain contexts. While interpreting these results, it’s 
essential to consider the overall model fit, as indicated 
by the Multiple R-squared value of 0.793. This indicates 
that a significant portion of the variance in the dependent 
variable can be explained collectively by the included 
independent variables. The adjusted R-squared value 
of 0.742 accounts for the model’s complexity, providing 
a balanced assessment of goodness of fit. The overall 
F-statistic, along with its p-value of 7.197e-13, highlights 
the collective predictive power of the model. This reaffirms 
that, collectively, the selected traits significantly contribute 
towards explaining the variability in the dependent 
variable. It can be concluded that this analysis offers a 
nuanced understanding of the relationships between 
various yield attributes and their influence on seed yield 
(Krishna et al., 2014). These findings provide a robust 
foundation for future research endeavors, enabling the 
optimization of plant breeding strategies and the raising 
of healthier, more productive crops. 

A comprehensive regression analysis was conducted to 
elucidate the relationships between various yield attributes 
and their influence on the seed yield. Regression analysis 
graphs were generated to visually represent these 
relationships for each trait (Fig. 4 & 5). These graphs 

offer valuable insights into the associations between the 
traits and the estimated outcome, helping to unravel the 
intricate interplay of factors that affect seed yield. 

While traditional breeding methods have made strides, 
advanced statistical techniques like Principal Component 
Analysis and Regression Analysis offer transformative 
avenues for oat improvement. PCA revealed that 
80.75% of total variability was contributed by five major 
components. Traits i.e., green fodder yield, dry matter 
yield, tillers per plant and seed yield significantly shape 
the oat population’s variability, underlining their economic 
importance. Regression analysis quantifies relationships 
between variables, showcasing how traits i.e., tillers per 
plant, test weight and number of spikelets intricately 
influence seed yield. Combining these insights paints 
a promising future for oat improvement. As the world’s 
population grows, the need for productive and resilient 
crops intensifies. By harnessing advanced statistical 
analyses, we embark on a journey to develop hardy oat 
varieties with improved yield and nutrition. This synergy 
between science and agriculture not only cultivates 
crops but also cultivates a future where sustenance and 
sustainability harmonize.
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Fig. 4 Regression graph of first six yield contributing traits. Each regression graph displays the trait of interest on the 
x-axis (seed yield) and the estimated outcome on the y-axis. 
 
 
 

 
 
 
 
Fig. 5 Regression graph of next six yield attributes. Each regression graph displays the trait of interest on the x-axis 
(seed yield) and the estimated outcome on the y-axis. 
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